首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: The aim of the present study is to analyze mechanisms underlying neurogenic relaxation of the corpus cavernosum which are believed to participate in penile erection. MATERIALS AND METHODS: Mechanical responses to nerve stimulation by electrical pulses and nicotine were measured in strips of canine corpus cavernosum precontracted with phenylephrine. Cyclic guanosine monophosphate (GMP) contents in the strips were also measured by radioimmunoassay. Immunohistochemistry for nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) was performed. RESULTS: Transmural electrical stimulation and nicotine produced relaxations in the isolated canine corpus. The neurogenic relaxation was abolished by N omega-nitro-L-arginine, a NOS inhibitor, and the inhibition was reversed by L-arginine. Relaxations induced by nerve stimulation and exogenous nitric oxide (NO) were depressed by oxyhemoglobin and methylene blue. Vasoactive intestinal polypeptide (VIP)-induced relaxations were not influenced by these inhibitors. In the controls strips and those made unresponsive to VIP by its repeated application, the responses to nerve stimulation did not differ. The content of cyclic GMP in the tissue increased in response to nicotine, the effect being abolished by the NO synthase inhibitor. Immunohistochemical study demonstrated neurons containing NOS and VIP. CONCLUSIONS: It appears that the relaxation induced by nerve stimulation is mediated solely by NO liberated from the nerve that activates soluble guanylate cyclase and increases the production of cyclic GMP in smooth muscle, whereas VIP does not play a role in the regulation of muscle tone under the experimental conditions used.  相似文献   

2.
The effects of electrical stimulation, applied to the superior salivatory nucleus (SSN) or the cervical sympathetic nerve, on vascular permeability in nasal mucosa were studied in 16 cats. Plasma extravasation was quantified by using Evans blue. Vascular permeability in the cat nasal mucosa was increased by the electrical stimulation of SSN. Plasma extravasation induced by SSN stimulation was reduced by administration of nitric oxide synthase (NOS) antagonist, N(omega)-nitro-L-arginine methyl ester (L-NAME). Administration of atropine did not affect increased vascular permeability by SSN stimulation. We conclude that neurogenic plasma extravasation in cat nasal mucosa evoked by the parasympathetic nerve is not mediated by cholinergic fibers but rather by nitric oxide.  相似文献   

3.
The effect of nitric oxide synthase (NOS) inhibition and endothelin-A (ETA)-receptor blockade on neural sympathetic control of vascular tone in the gastrocnemius muscle was examined in anesthetized dogs under conditions of constant flow. Muscle perfusion pressure (MPP) was measured before and after NOS inhibition (Nomega-nitro-L-arginine methyl ester; L-NAME) and ETA-receptor blockade [cyclo-(D-Trp-d-Asp-Pro-D-Val-Leu); BQ-123]. Zero and maximum sympathetic nerve activities were achieved by sciatic nerve cold block and stimulation, respectively. In group 1 (n = 6), MPP was measured 1) before nerve cold block, 2) during nerve cold block, and 3) during nerve stimulation. Measurements under these conditions were repeated after L-NAME and then BQ-123. The same protocol was followed in group 2 (n = 6) except that the order of L-NAME and BQ-123 was reversed. MPP and muscle vascular resistance (MVR) increased after L-NAME and then decreased to control values after BQ-123. MVR decreased after BQ-123 alone and, with the addition of L-NAME, increased to a level not different from that observed during the control period. MVR fell during nerve cold block. This response was not affected by administration of L-NAME followed by BQ-123, but it was attenuated by administration of BQ-123 before L-NAME. The constrictor response during sympathetic nerve stimulation was enhanced by L-NAME; no further effect was observed with BQ-123, nor was the response affected when BQ-123 was given first. These findings indicate that endothelin contributes to 1) basal vascular tone in skeletal muscle and 2) the increase in skeletal muscle vascular resistance after NOS inhibition. Finally, nitric oxide "buffers" the degree of constriction in skeletal muscle vasculature during maximal sympathetic stimulation.  相似文献   

4.
Immunohistochemical and pharmacological techniques were used to examine perivascular nerves, endothelium and the effects of inhibition of nitric oxide synthesis on responses in mesenteric arteries/perfused mesenteric arterial beds of the Golden hamster. Frequency-dependent vasoconstrictions to electrical field stimulation and dose-dependent vasoconstrictions to noradrenaline were significantly augmented by NG-nitro-L-arginine methyl ester (10(-5) M), an inhibitor of nitric oxide synthase. In preparations with tone raised with methoxamine (10 microM) dose-dependent relaxations to ATP, but not to acetylcholine, were blocked by NG-nitro-L-arginine methyl ester. In the presence of guanethidine (5 microM) to block sympathetic neurotransmission there was no neurogenic relaxation to electrical field stimulation. Furthermore, the sensory neurotoxin capsaicin (0.05-5 nmol) did not elicit relaxation. Immunohistochemical studies demonstrated dense plexuses of fibres immunoreactive for tyrosine hydroxylase and neuropeptide Y, a plexus of moderate density for calcitionin gene-related peptide and an absence of fibres immunoreactive for substance P and vasoactive intestinal polypeptide. Of particular interest is the finding that whereas sympathetic perivascular nerves and nitric oxide regulate the function of hamster mesenteric arteries, there is no apparent motor function of calcitonin gene-related peptide-containing sensory nerves.  相似文献   

5.
BACKGROUND: Sympathetic nerve activity is increased in patients with severe heart failure. Whether this intense sympathoexcitation is normalized after heart transplantation, despite cyclosporine A treatment, is still unsettled. In the present study, regional sympathetic function in 12 patients with severe heart failure, awaiting heart transplantation, was compared with that in 15 heart transplant recipients and 12 healthy subjects. METHODS: Total and regional sympathetic activity in the heart and kidney were evaluated with isotope dilution, using steady-state infusion of [3H] norepinephrine. Sympathetic nerve traffic to skeletal muscle vascular bed was recorded intraneurally with microneurography. RESULTS: Total body, cardiac, and renal norepinephrine spillovers were high in the heart failure group (6792 +/- 455, 385 +/- 74, and 1554 +/- 114 pmol/min, respectively) as was muscle sympathetic nerve activity (82 +/- 5 bursts/min). Transplant recipients showed a marked reduction of total body (3200 +/- 307 pmol/min) and renal (747 +/- 169 pmol/min) norepinephrine spillovers and sympathetic nerve firing to skeletal muscle (22 +/- 6 bursts/min), none of which differed from healthy subjects. CONCLUSIONS: The augmentation of total body and regional sympathetic outflow to the kidney and skeletal muscle vascular beds, associated with a failing heart, was normalized after transplantation. Thus, sympathoexcitation in heart failure is reversible. Furthermore, because all heart transplant recipients received cyclosporine A, the findings do not support the concept that cyclosporine-induced hypertension is mediated by increased sympathetic nerve activity.  相似文献   

6.
1. The mechanism of neurogenic regulation of skeletal muscle circulation was studied in the hindlimb of anaesthetized rats in vivo. Regional blood flow (RBF) of the hindlimb was recorded with a pulsed Doppler flow probe positioned in the iliac artery. 2. A short period (1 min) of sciatic nerve stimulation at 10 Hz caused a sustained increase in RBF (from 2.0 +/- 0.2 to 3.7 +/- 0.2 kHz at the peak), but no appreciable change in either MBP or HR, suggesting that the nerve stimulation produced local vasodilatation of the peripheral vasculature. The hyperaemic response reached a peak within 15 s and characteristically remained above the basal level for more than 5 min after the cessation of nerve stimulation. The response was regarded as a secondary response brought about by the contraction of skeletal muscles since (+)-tubocurarine (0.73 micromol kg(-1), i.a.) almost abolished it. 3. Lignocaine (43 micromol kg(-1), i.a.) and capsaicin (0.33 micromol kg(-1), i.a.) significantly suppressed the hyperaemic response to skeletal muscle contraction, suggesting that capsaicin-sensitive sensory nerves contribute to the hyperaemia. In contrast, an inhibitor of NO synthase, N(omega)-nitro-L-arginine methyl ester (1 micromol kg(-1) min(-1), i.v.), did not affect the hyperaemic response. 4. Serum levels of calcitonin gene-related peptide (CGRP) in iliac venous effluent significantly increased from 51 +/- 4 to 77 +/- 5 fmol ml(-1) during the hyperaemic response to skeletal muscle contraction. A bolus injection of CGRP (300 pmol kg(-1), i.a.) induced a long-lasting increase in RBF of the hindlimb. Moreover, CGRP(8-37) (100 nmol kg(-1) min(-1), i.v.), a specific CGRP1 receptor antagonist, significantly suppressed the hyperaemic response, especially the sustained phase of the response which was almost abolished by this antagonist. 5. These results suggest that CGRP, which is released from peripheral endings of capsaicin-sensitive sensory nerves, partly mediates the hyperaemia evoked by skeletal muscle contraction of the rat hindlimb.  相似文献   

7.
The goal of this study was to determine if the endogenous activity of nitric oxide (NO) and/or prostanoids can limit arteriolar responses to increased sympathetic nerve activity in striated muscle, and to explore possible changes in these influences during rapid juvenile growth. Using intravital microscopy, arteriolar responses to 2-16 Hz sympathetic nerve stimulation were studied in the superfused spinotrapezius muscle of weanling (4-5 weeks old) and juvenile (7-8 weeks old) rats. Nerve stimulation elicited frequency-dependent arteriolar constrictions that were abolished in both age groups by the fast Na+-channel blocker tetrodotoxin or the alpha-antagonist phentolamine. Diameter and flow responses to 2-8 Hz stimulation were greater in juvenile rats than in weanling rats. In juvenile rats but not in weanling rats, the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) reduced arteriolar diameters and blood flow at rest and enhanced the arteriolar diameter and flow responses to sympathetic nerve stimulation. The cyclooxygenase inhibitor meclofenamate reduced resting arteriolar diameters in both age groups, but had no effect on responses to sympathetic nerve stimulation in either group. These results suggest that juvenile growth is accompanied by an overall increase in arteriolar responsiveness to sympathetic nerve activity, and by the onset of local NO activity that limits this increased responsiveness.  相似文献   

8.
PURPOSE: To determine whether the monkey central retinal artery is innervated by vasodilator nerves and to analyze the mechanism underlying the neurogenic response. METHODS: Changes in isometric tension were recorded in helical strips of the arteries, which were stimulated by transmurally applied electrical pulses or nicotine. The presence of perivascular nerve fibers containing nitric oxide (NO) synthase immunoreactivity was determined histologically. RESULTS: Transmural electrical stimulation (5 Hz) and nicotine produced a relaxation of the arterial strips denuded of the endothelium, treated with prazosin, and contracted with prostaglandin F2 alpha. The response was not influenced by timolol, atropine, and indomethacin, but it was abolished by methylene blue and oxyhemoglobin. NG-nitro-L-arginine, a NO synthase inhibitor, abolished the neurogenic relaxation, and L-arginine restored the response. Antagonists of calcitonin gene-related peptide and vasoactive intestinal polypeptide in sufficient concentrations did not influence the response to nerve stimulation by nicotine. There were abundant nerve fibers and bundles containing NO synthase immunoreactivity in the adventitia. CONCLUSIONS: Monkey central retinal arteries are innervated by NO synthase-containing nerves that liberate NO possibly as a neurotransmitter on excitation to produce muscular relaxation.  相似文献   

9.
Vasoconstrictor responses elicited by periarterial electrical nerve stimulation were analyzed pharmacologically in the canine isolated, perfused intermediate auricular artery. Phentolamine (10 microM) significantly inhibited the vasoconstrictor responses to stimulation at 5 Hz and over but not those to stimulation at frequencies below 5 Hz. Additionally administered alpha, beta-methylene ATP (1 microM) abolished the phentolamine-resistant vasoconstrictions at all frequencies used in this study. In contrast, suramin (100 microM) inhibited the vasoconstrictor responses to stimulation at 5 Hz and below but not those to stimulation at frequencies higher than 5 Hz. Phentolamine abolished the suramin-resistant vasoconstriction at all frequencies. Phentolamine and alpha, beta-methylene ATP selectively abolished the vasoconstrictor responses to exogenous noradrenaline and ATP, respectively. These results show that the co-transmission of noradrenaline and ATP exists at sympathetic nerve terminals in the canine intermediate auricular artery, and that purinergic transmission is mainly involved in the vasoconstrictor responses to low-frequency nerve stimulation.  相似文献   

10.
The participation of nitric oxide and vasoactive intestinal peptide (VIP) in the neurogenic regulation of bovine cerebral arteries was investigated. Nitrergic nerve fibers and ganglion-like groups of neurons were revealed by NADPH-diaphorase staining in the adventitial layer of bovine cerebral arteries. NADPH diaphorase also was present in endothelial cells but not in the smooth muscle layer. Double immunolabeling for neuronal nitric oxide synthase and VIP indicated that both molecules co-localized in the same nerve fibers in these vessels. Transmural nerve stimulation (200 mA, 0.2 milliseconds, 1 to 8 Hz) of endothelium-denuded bovine cerebral artery rings precontracted with prostaglandin F2 alpha, produced tetrodotoxin-sensitive relaxations that were completely suppressed by NG-nitro-L-arginine methyl ester (L-NAME) and by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline (ODQ), but were not affected by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), nor by VIP tachyphylaxis induced by pretreatment with 1 mumol/L VIP. Transmural nerve stimulation also elicited increases in intracellular cyclic GMP concentration, which were prevented by L-NAME, and small decreases in intracellular cyclic AMP concentration. Addition of VIP to bovine cerebral artery rings without endothelium produced a concentration-dependent relaxation that was partially inhibited by L-NAME, ODQ, and SQ 22,536. The effects of L-NAME and SQ 22,536 were additive. VIP induced a transient increase in intracellular cyclic GMP concentration, which was maximal 1 minute after VIP addition, when the highest relaxation rate was observed, and which was blocked by L-NAME. It is concluded that nitric oxide produced by perivascular neurons and nerve fibers fully accounts for the experimental neurogenic relaxation of bovine cerebral arteries and that VIP, which also is present in the same perivascular fibers, acts as a neuromodulator by activating neuronal nitric oxide synthase.  相似文献   

11.
The neural mechanisms to reflex dilation elicited by electro-acupuncture stimulation were investigated in anesthetized rats. Two needles, with 160 microns diameter and about 5 mm apart, were inserted into the skin and underlying muscle of a hindpaw. Repetitive 20 Hz, 0.5 ms electrical pulses at various intensities were used for stimulation for 30s. The pupil size was magnified about 44 times via a microscope and was continuously recorded on a videotape. Electro-acupuncture stimulation at more than 0.5 up to 6 mA induced stimulus intensity-dependent pupil dilation. These responses were abolished by the severance of the sciatic and saphenous nerve of the stimulated hindlimb. Compound action potentials were recorded from the distal cut end of the tibial of a saphenous nerve following electro-acupuncture stimulation of the hindpaw. The mean threshold of the compound action potentials of the myelinated fibers in saphenous nerves was 0.18 mA, while that of unmyelinated fibers was 3.0 mA. The mean threshold of the compound action potentials of the myelinated fibers in the tibial nerve was 0.20 mA of unmyelinated fibers was 3.3 mA. Severance of bilateral trunks did not affect the response, while severance of the third cranial nerves abolished the responses. In conclusion, electro-acupuncture stimulation applied to the hindpaws of the anesthetized rats induced excitation of myelinated or of both myelinated and unmyelinated afferent fibers of the tibial and saphenous nerve, and involved a reflex response of pupil dilation through the third cranial parasympathetic efferent nerve.  相似文献   

12.
Vasomotor responses from the nasal mucosa and tongue, and contractions of the nictitating membrane, were recorded on stimulation of the cervical sympathetic or internal carotid nerves. Preganglionic sympathetic nerve fibres which elicited a membrane response possessed a lower threshold than those which evoked nasal vasoconstriction, while the latter displayed a lower threshold than fibres which evoked tongue vasoconstriction. The sympathetic vasodilator fibres to the tongue whose activity was revealed after alpha-receptor blockade, had a similar threshold to the vasoconstrictor fibres. Membrane contraction, nasal vasoconstriction and occasionally tongue vasoconstriction could be evoked by stimulating the internal carotid nerve. The postganglionic fibres innervating the nasal mucosa had a similar threshold to those of the nictitating membrane, which may indicate that there are small myelinated fibres innervating the mucosa. The preganglionic compound nerve action potential had four major components, S1-S4. S1, S2 and usually S3 fibres were associated with membrane contraction; S2, S3 and sometimes S1 fibres were associated with nasal vasoconstriction; and S3, usually S2 and occasionally S1 fibres were associated with vasoconstriction in the tongue. It is concluded that each of these three groups of nerve fibres, but not S4 fibres, may include fibres associated functionally with the three effectors. There was a considerable difference between the relative amplitude of the responses of the three effectors elicited by stimulation of the cervical sympathetic nerve at frequencies between 0.2 and 2 Hz. Vasoconstrictor responses were relatively larger than membrane contractions suggesting differences in the mechanisms of neurotransmission at the neuroeffector junctions.  相似文献   

13.
Cross-sections of the vas deferens taken from control adult male rats showed positive histochemical reactivity to acetylcholinesterase and immunoreactivity for antibodies to protein gene product 9.5, tyrosine hydroxylase, neuropeptide Y, vasoactive intestinal polypeptide, nitric oxide synthase and calcitonin gene-related peptide. Immunoreactivity to substance P was very sparse. Histochemical reactivity to acetylcholinesterase and immunoreactivity to vasoactive intestinal polypeptide and nitric oxide synthase was concentrated in the subepithelial lamina propria and inner smooth muscle layers. Complete surgical denervation resulting from transection of the nerve arising from the pelvic ganglion which supplies the vas deferens totally abolished the immunoreactivity to all of the antibodies tested as well as the histochemical reactivity to acetylcholinesterase. In sections of the prostatic end of the vas deferens taken from rats neonatally pretreated with capsaicin, immunoreactivity to calcitonin gene-related peptide and substance P was reduced by 75 and 83%, respectively. Immunoreactivity to neuropeptide Y, vasoactive intestinal polypeptide and nitric oxide synthase was similar in tissue sections taken from capsaicin-treated rats and those taken from control tissues. Pretreatment of rats with guanethidine or 6-hydroxydopamine decreased immunoreactivity to tyrosine hydroxylase and neuropeptide Y by 60-70%, but immunoreactivity to substance P, vasoactive intestinal polypeptide and nitric oxide synthase was unchanged, while immunoreactivity to calcitonin gene-related peptide and acetylcholinesterase staining was increased by guanethidine but not by 6-hydroxydopamine treatment. Triple labelling experiments showed nitric oxide synthase, vasoactive intestinal polypeptide and acetylcholinesterase all to be co-localized in some nerve fibres. These results indicate that the nitric oxide synthase contained in the nerve fibres innervating the rat vas deferens is unaffected by pretreatment of rats with capsaicin, 6-hydroxydopamine or guanethidine but is abolished by surgical denervation, of postganglionic parasympathetic, sympathetic and sensory nerves. Therefore it appears that nitric oxide synthase is co-localized with vasoactive intestinal polypeptide in the postganglionic parasympathetic nerves which innervate the rat vas deferens.  相似文献   

14.
Local actions of acetylcholine on vasomotor regulation in rat incisor pulp were investigated in anaesthetized animals. Pulpal blood flow was measured with laser Doppler flowmetry. lontophoresis (40 or 60 muA for 20 s) with acetylcholine or carbachol on an exposed dentin surface caused a biphasic response: an initial vasoconstriction was followed by an atropinesensitive vasodilation. The vasoconstrictor response was enhanced by 171% in the presence of atropine, whereas in control experiments, using isotonic saline as a medium for the direct current, similar vasoconstriction was unaffected by atropine. Carbachol-induced vasodilation was significantly reduced by 30% after intravenous injection of the nitric oxide synthesis blocker N omega-nitro-L-arginine methyl ester (10 mg kg-1), and the remaining vasodilation was abolished by atropine. The present results support the concept of a cholinergic modulation of sympathetic vasoconstrictor function and of a partial contribution of nitric oxide in carbachol-induced vasodilation in rat incisor pulp.  相似文献   

15.
The effect of high affinity galanin antagonist M35 on neurogenic cutaneous vasodilatation has been studied in the pigeon using a Laser Doppler Imager. Cutaneous application of mustard oil or antidromic electrical stimulation of a cutaneous nerve produced a small increase in skin blood flow. Close arterial injection of M35 prior to chemical or electrical stimulation resulted in a marked augmentation of the vasodilatory response. This effect was abolished by chronic denervation. The results suggest a nerve-mediated inhibitory effect of endogenous galanin on neurogenic cutaneous vasodilatation in the pigeon skin and provide the first experimental evidence for an inhibitory local regulatory function of cutaneous sensory nerves at least in the avian skin.  相似文献   

16.
The aim of this study was to reexamine the hypothesis that cardiopulmonary baroreflexes are more important than sinoaortic baroreflexes in causing vasoconstriction in the skeletal muscle circulation during orthostatic stress. We recorded muscle sympathetic nerve activity (MSNA) with microelectrodes in the peroneal nerve (and forearm blood flow with venous occlusion plethysmography) in normal subjects (innervated ventricles) and in heart transplant recipients (denervated ventricles) during graded lower body negative pressure (LBNP) performed alone and in combination with intravenous infusion of phenylephrine, which was titrated to eliminate the orthostatically induced fall in blood pressure and thus the unloading of both carotid and aortic baroreceptors. The principal new findings are as follows: (1) The increases in both MSNA and forearm vascular resistance during multiple levels of LBNP were not attenuated by heart transplantation, which causes ventricular but not sinoaortic deafferentation. (2) In heart transplant recipients, a small increase in MSNA during mild LBNP was dependent on a decrease in arterial pressure, but in normal subjects, a similar increase in MSNA occurred in the absence of any detectable decrease in the aortic pressure stimulus to the sinoaortic baroreceptors. (3) In normal subjects, the large increase in MSNA during a high level of LBNP was dependent on a decrease in arterial pressure and could be dissociated from the decrease in central venous pressure. Taken together, the findings strongly suggest that sinoaortic baroreflexes are much more important and ventricular baroreflexes are much less important than previously thought in causing reflex sympathetic activation and vasoconstriction in the human skeletal muscle circulation during orthostatic stress.  相似文献   

17.
OBJECTIVE: We have previously demonstrated that calcium-dependent nitric oxide synthase is induced by estrogen and that by the end of pregnancy nitric oxide synthase of both endothelial and neuronal origin is increased in various maternal tissues. This rise in activity may be crucial for the alterations in muscle activity necessary for a successful pregnancy. If so, the increase in nitric oxide synthase activity must occur early in gestation. STUDY DESIGN: We tested the hypothesis that pregnancy increases nitric oxide synthase activity early in gestation by measuring in heart, kidney, skeletal muscle, and esophagus of time-mated guinea pigs the conversion by nitric oxide synthase of carbon 14-labeled L-arginine to carbon 14-labeled citrulline and the concentration of cyclic guanosine monophosphate, the second messenger of nitric oxide. RESULTS: Calcium-dependent nitric oxide synthase activity was increased twofold to fourfold by pregnancy in each tissue examined. The rise began by 0.14 gestation (9 of 63 +/- 2 days) and reached a plateau by 0.30 gestation (19 days), which was then maintained until term. The treatment of pregnant animals with tamoxifen decreased nitric oxide synthase activity to nonpregnant values in the heart, where tamoxifen is an estrogen receptor antagonist, but not in kidney, skeletal muscle, and esophagus. Cyclic guanosine monophosphate also rose progressively in each tissue studied until about 0.70 gestation before declining in skeletal muscle, kidney, and heart. It remained elevated in the esophagus. CONCLUSION: These studies demonstrate that nitric oxide synthase activity in maternal tissues rises early in pregnancy and is associated with an increase in cyclic guanosine monophosphate, the second messenger of nitric oxide. These findings are consistent with the hypothesis that an increase in nitric oxide synthase plays a role in smooth muscle adaptations of pregnancy.  相似文献   

18.
BACKGROUND: Endogenous nitric oxide (NO) reduces sympathetic vasoconstriction by attenuating neuronal excitability in the brain stem and inhibition of postganglionic neurotransmission. We studied whether this modulation of sympathetic circulatory control by NO may be altered during chronic administration of NO donor drugs in pigs. METHODS AND RESULTS: Nitrate tolerance was induced by oral administration of isosorbide dinitrate (ISDN, 4 mg/kg per day for 4 weeks) in eight pigs. Four of them were chronically instrumented for the measurement of mean arterial blood pressure and cardiac output in the conscious state. ISDN treatment caused hemodynamic tolerance to NO donors and significantly increased the hypotensive responses to pharmacologic ganglionic blockade in conscious pigs. In general anesthesia, ISDN-treated animals and age-matched controls (n=5) had similar baseline renal sympathetic nerve activity and in both groups neither inhibition of NO synthases (NOS) nor administration of NO donors to the brain stem by intracerebroventricular (i.c.v.) infusions caused significant changes in baseline renal sympathetic nerve activity. However, whereas sympathoexcitatory responses to glutamate (0.5 mL, 0.1 mol/L, i.c.v.) or electrical stimulation of somatic nerve afferents were significantly potentiated by central NOS inhibition and attenuated by NO donors in controls, these treatments no longer had significant effects in ISDN-treated pigs. Furthermore, reflex sympathetic activation in response to intravenous NO donor treatment was more pronounced in nitrate tolerant animals, which suggests loss of central sympathoinhibitory effects of NO. Subsequent histology on brain stem slices with NADPH-diaphorase as NOS marker revealed significant reduction of NOS density in ISDN-treated pigs. CONCLUSIONS: Long-term administration of organic nitrates reduces the number of NO-producing neurons in the brain stem and causes loss of inhibitory effects of NO on sympathetic excitability. This component of tolerance to organic nitrates may be important in patients confronted frequently with sympathetic activation caused by mental and/or physical stressors.  相似文献   

19.
BACKGROUND: Sudden hypotension in progressive hypovolemia or during hemodialysis is attributed to sudden inhibition of sympathetic activity. Critical ventricular underfilling seems responsible for this paradox, but it is unknown why the transition from sympathoactivation accompanying hypovolemia to sympathoinhibition is so abrupt. We studied whether brief fluctuation of sympathetic activity induced by cold pressor test (CPT) evokes sympathoinhibition if applied during low cardiac output. METHODS AND RESULTS: Fourteen healthy subjects underwent CPT, lower-body negative pressure (LBNP; -45 mm Hg for 60 minutes), or the combination thereof. CPT alone caused vasoconstriction and increased muscle sympathetic nerve activity, followed by uneventful relaxation. When applied during reduced cardiac output, tachycardia, and vasoconstriction induced by prior LBNP for 6 minutes, CPT again caused vasoconstriction, now followed by acute hypotension in 10 subjects, and was associated with vasorelaxation, relative bradycardia, and fall in muscle sympathetic nerve activity. Eight subjects also experienced acute LBNP-induced hypotension in the absence of CPT, but not until 17 +/- 6 minutes of LBNP. We also performed CPT before and in the final phase of hemodialysis in 8 patients. Before dialysis, the patients tolerated CPT uneventfully, but during hemodialysis, CPT provoked acute hypotension in 5 cases, showing similar withdrawal of vasoconstriction. CONCLUSIONS: This is the first study showing that brief cold stress, tolerated well in normal circulatory conditions, can provoke sudden sympathoinhibition and hypotension when applied during decreased cardiac output induced by LBNP or hemodialysis. We suggest that during conditions of a decreased cardiac output, subtle sympathetic relaxation such as follows cold stress triggers self-enhancing relaxation that cannot be controlled.  相似文献   

20.
1. Male rats were deprived as weanlings of dietary vitamin E for 2, 4, 6, 10 and 12 months. Mesenteric arterial beds from these rats and from age-matched controls were isolated and perfused with Krebs solution at a constant flow rate (5 ml min-1). The function of perivascular sympathetic nerves, smooth muscle and endothelium was assessed. 2. At 12 months vitamin E deficient rats exhibited the characteristic symptoms of vitamin E deficiency, namely poor coat condition, muscle wasting, kyphoscoliosis and impaired gait. In the isolated mesenteric arterial bed electrical field stimulation (EFS) of perivascular nerves (4-32 Hz, 90 V, 1 ms, for 30 s) elicited frequency-dependent vasoconstrictor responses which were unaffected by vitamin E deficiency except at 12 months, at which age responses were significantly greater than those of the controls at 24 and 32 Hz (P < 0.01). 3. Exogenous noradrenaline (NA; 0.15-500 nmol) elicited dose-dependent vasoconstriction which was similar in vitamin E-deficient and control preparations at all ages. Potassium chloride (0.15 mmol) also produced similar vasoconstrictor responses in vitamin E-deficient and control preparations at each age. 4. Tone of the preparations was raised by continuous perfusion with methoxamine (4-70 microM), producing similar increases in perfusion pressure in vitamin E-deficient and control preparations at each age. Endothelium-dependent dose-dependent vasodilatation to adenosine 5'-triphosphate was significantly impaired in mesenteric arterial beds from 12 month-old vitamin E-deficient rats compared with the controls (P < 0.05). Relaxation to acetylcholine was not significantly different at any age. 5. Endothelium-independent vasodilatation to sodium nitroprusside was similar in vitamin E-deficient rats and age-matched controls. 6. These results suggest that long term (12 months) deprivation of dietary vitamin E may impair endothelial function in mesenteric arteries of the rat. Sympathetic perivascular nerve constrictor function was increased at 12 months. There were no functionally expressed changes in the vascular smooth muscle, which appears to be more resilient to the effects of oxidative stress in vitamin E deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号