首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sapphire convex surface was loaded against a reciprocating flat SiC counterface material. In this particular study the chemical nature of the wear surfaces and associated features such as the wear debris and local areas of material transfer have been studied using analytical techniques such as EDX, XPS and AES. Prior to wear tests the SiC substrate is covered with a thin (1–2 nm) layer of SiO2. During wear the thickness of this layer is substantially reduced, and wear debris of a cylindrical morphology is produced. Examination of the outer 1–2 μm of the wear debris, as well as the first few atomic layers, by EDX and AES, respectively, showed very similar results in areas rich in oxygen accompanied by varying quantities of Al and Si but litte carbon. It is proposed that the wear debris is initially produced by the fragmentation of asperities on the two wear surfaces followed by the transfer of a wear film of SiO2. Such equiaxed debris is then agglomerated into a characteristic cylindrical particle that lies normal to the reciprocating motion.  相似文献   

2.
The transition of mild to severe wear of ceramics depends on the operating conditions (normal load, velocity and temperature) and material properties (like grain size, mechanical and thermal material properties). Adachi et al. [Wear 203-204 (1997) 291] introduced the transition of mild to severe wear of ceramics by defining a mechanical severity parameter based on the work of Hamilton [Proc. Inst. Mech. Eng. 197C (1983)] and a thermal severity parameter based on the work of Ashby et al. [Tribol. Trans. (34) (1991) 577]. Metselaar et al. [Wear 249 (2001) 962] improved the thermal severity parameter using the temperature model introduced by Bos [Frictional heating of tribological contacts, Ph.D. Thesis, University of Twente, 1995]. Better prediction of wear transition in the region where the transition is dominated by thermally induced wear was achieved. The combination of the mechanical severity parameter and the thermal severity parameter for Peclet number (Pe) higher than 2 is presented in this paper. This model is verified experimentally and gives an improved prediction of the mild to severe wear transition of ceramics.  相似文献   

3.
M. Heitkemper  A. Fischer  Ch. Bohne  A. Pyzalla 《Wear》2001,250(1-12):477-484
High-nitrogen tool steels (Fe, 15% Cr, 1% Mo, 0.3% C, 0.3% N) are applied, e.g. in bearings and gears in aeronautics and space technology. Their advantage compared to conventional, nitrogen-free tool steels is a superior corrosion resistance, which can be attributed to Cr, Mo, and N dissolved within the solid solution. In order to gain a sufficient toughness for application, these steels are tempered above 600°C bringing about precipitated carbides and nitrides, which bind Cr and N and, therefore, deteriorate the chemical properties. Within a DFG (German Research Council)-funded research project the authors show, that by means of laser hardening it is possible to dissolve a part of these precipitates — mainly nitrides resulting in improved properties under fatigue, wear and corrosion. This is brought about by a newly generated martensite with compressive residual stresses (fatigue, sliding wear), dissolution of Cr and N (corrosion) and a higher mechanical stability of the surfaces (sliding wear). This contribution focuses on the acting wear mechanisms under dry sliding wear. The investigations are carried out with pin-on-disk tests, with the disk as the actual specimen and a pin made of conventionally hardened 52100 bearing steel (100Cr6). It can be shown, that the wear properties of the high-nitrogen-steel are better than those of comparable conventional tool steels and that a laser treatment leads to a further improvement. Due to the fact that there is a tempered zone between overlapping laser-hardened areas, there is a change of acting mechanisms and, thus a distinct difference in wear rates. For the conventional corrosion resistant martensitic tool steel the difference between the tempered and the hardened zone is not as marked. Neither the wear mechanisms nor the wear rates differ distinctly. These effects and their influence on the wear behaviour is correlated with the microstructure of both steels before and after laser-hardening.  相似文献   

4.
One of the major causes for tool failure in sheet metal forming is transfer and accumulation of adhered sheet material to the tool surfaces, generally referred to as galling. In the present work, the galling resistance of several tool materials was investigated against two-phase ferritic-martensitic carbon steel under dry sliding test conditions. Tribological evaluation was carried out at different contact pressures by using a slider-on-flat-surface (SOFS) tribometer. For all selected test conditions, a consistent ranking of the materials was obtained with best performance observed for nitrogen alloyed powder metallurgy tool steel. Worst galling resistance was observed by nodular cast iron.  相似文献   

5.
A very efficient, incremental implementation of Archard’s wear model on the global scale for pin wear and disc wear in a pin-on-disc tribometer is presented. The results from the model are in good agreement with experimental results. The identified wear model is implemented in a finite element based tool (Wear-Processor) for 3D wear simulations and the results compare favorably with that from the global wear modeling scheme.  相似文献   

6.
The fundamentals of coating tribology are presented by using a generalised holistic approach to the friction and wear mechanisms of coated surfaces in dry sliding contacts. It is based on a classification of the tribological contact process into macromechanical, micromechanical, nanomechanical and tribochemical contact mechanisms, and material transfer. The important influence of thin tribo- and transfer layers formed during the sliding action is shown. Optimal surface design regarding both friction and wear can be achieved by new multi-layer techniques which can provide properties such as reduced stresses, improved adhesion to the substrate, more flexible coatings and harder and smoother surfaces. The differences between contact mechanisms in dry, water- and oil-lubricated contacts with coated surfaces is illustrated by experimental results from diamond-like coatings sliding against a steel and an alumina ball. The mechanisms of the formation of dry transfer layers, tribolayers and lubricated boundary and reaction films are discussed.  相似文献   

7.
李占君  王霞 《机械》2007,34(11):71-72
采用自制的销盘式干滑动摩擦磨损试验机,研究了45钢配副的摩擦磨损特性.结果表明:材料的磨损率随着速度、载荷的增加而增大;摩擦系数随着速度、载荷的增加而减小.磨损机理主要为磨粒磨损和粘着磨损.  相似文献   

8.
V. Krishna Kumar  S. Swarnamani 《Wear》1997,210(1-2):255-262
Dry frictional contact between two surfaces, one made of plasma sprayed ceramic coatings of Al2O3 and Al2O3---TiO2 combination and the other made of steel, is analyzed. The experiments were conducted using a pin-on-disc set-up in the load range of 5–35 N and for sliding distances up to 14 km. The interactions between friction, wear and vibrations due to influence of normal load, sliding speed and system dynamics are investigated in the present paper. Two vibration parameters of pin in the load direction (vertical) are monitored, namely the r.m.s. acceleration and the kurtosis, which seem to be influenced considerably by the wear process and indicate correlation with wear mechanisms taking place such as stick-slip and grain pull-out, as evidenced by scanning electron microscopy of worn surfaces. The study shows that a range of frequency is to be utilized for vibration monitoring to include natural frequencis of the system consisting of pin in contact with disc. This could be estimated by a standard impulse hammer test. The pin acceleration decreases with increase in load and sliding distance, but with respect to sliding speed, the vibration level intially decreases but increases beyond the sliding speed of 1.5 m s−1. Among the three ceramic coatings, TiO2 is found to be most wear resistant, exhibiting the lowest friction coefficient and a low vibration level. Variation in kurtosis with run-in wear indicates smoothing of Al2O3 due to grain pull out.  相似文献   

9.
It has been recognized that wear debris contains extensive information about wear and friction of materials. Investigation of wear debris is important for tribological research. In order to find out an effective way that is able to diagnose and predict the wear state of polymers, the authors investigated the relationship between the wear debris morphology and the wear behaviour of the bulk material. Polyetheretherketone (PEEK) was employed as the model material. Its sliding wear and friction properties were measured by means of a pin-on-disc apparatus. At a constant sliding velocity of 1 m s−1, the specific wear rate was independent of load under lower loading conditions (1–4 MPa) but increased with a rise in load under higher loading conditions (4–8 MPa). The coefficient of friction was insensitive to the variation of contact pressure. The possible mechanisms involved were analysed on the basis of the wear debris morphology as well as the wear performance. Fractal geometry, which describes non-Euclidean objects, was applied to the quantitative analysis of the boundary texture of the wear debris due to the fact that the qualitative assessment of the wear debris morphology was not effective enough to reflect the geometrical variation of the fragmental shapes. The experimental results demonstrated that the wear debris were fractals, and could be characterized with the fractal dimensions which were determined by the slit island method. In addition, it was found that the fractal dimension of the wear debris was closely related to the wear behaviour of PEEK, and can be regarded as a measure of wear rate.  相似文献   

10.
W.M. da Silva  J.D.B. de Mello   《Wear》2009,267(11):1987-986
Abrasive wear is currently classified according to different particle dynamics: (a) the sliding of active particles on the sample surface and (b) the rolling of abrasive particles between the surfaces. In this paper, instrumented laboratory tests are used to present a new methodology for the simulation of abrasive wear. The rolling of the abrasives is represented by a sequence of indentations, and the sliding of the active particle by a sequence of scratches. A new piece of equipment was especially developed to reproduce the action of an abrasive particle. Two high resolution sliders drive the sample horizontally while the indenter is moved vertically by another slider. Besides this, a high resolution piezoelectric translator is used to control the indenter movement while a 3D load cell controls the intensity of the process. A worn surface produced in a rubber wheel abrasive wear test was used as the reference for the simulation. Its topography was assessed by using laser interferometry and scanning electron microscopy and showed that the prevailing wear mechanism was parallel scratches. The results showed that the superimposition of scratches is the basis which makes it possible to correlate topographical parameters of the reference to the controlling variables used in the simulation. A special method to describe the average depth of the scratches in function of the distance between them (superimposition) was developed. Wear occurs when superimposition is greater than 80%. The average depth of the scratches increased according to an elevation in the degree of superimposition and to the augmentation of normal load. This simulation methodology produced a surface topographically and morphologically similar to that of the reference.  相似文献   

11.
激光加热辅助切削工程陶瓷技术即使用激光作为外加热源先于刀具加热软化陶瓷工件,然后再使用刀具将软化的材料去除。较高的剪切变形区温度降低了陶瓷材料的屈服应力和硬度,陶瓷变形特征从脆性转变为塑性或者准塑性,从而提高切削效率,延长刀具使用寿命,有望解决陶瓷加工中的低效率和高成本现状。从激光加热辅助切削工程陶瓷研究进展、激光束的整合,以及切削机理等方面,对激光加热辅助加工工程陶瓷做了较为全面的论述。  相似文献   

12.
A 20–50 nm thick tribofilm was generated on the worn surface of a multilayer coating TiAlN/VN after dry sliding test against an alumina counterpart. The tribofilm was characterized by applying analytical transmission electron microscopy techniques with emphasis on detailed electron energy loss spectrometry and energy loss near edge structure analysis. Pronounced oxygen in the tribofilm indicated a predominant tribo-oxidation wear. Structural changes in the inner-shell ionization edges of N, Ti and V suggested decomposition of nitride fragments.  相似文献   

13.
The author reviews selected experimental results which have contributed to improved understanding of sliding wear processes. The emphasis is on the chemical and structural changes which occur at and near the surface of metallic materials during sliding in different environments. The importance of plastic deformation, fracture, transfer, mechanical mixing, phase transformations and oxidation is discussed. Examples of transitions are described, and interesting correlations noted. In selecting the content of this paper, the author includes controversial results and conclusions and raises questions about the development of wear equations, interpretations of the wear coefficient, the importance of adhesion, the roles of hardness, the causes of transitions and the location of debris-producing cracks.  相似文献   

14.
The calculation dependence developed based on the theoretical methods and experimental results includes the summarized characteristics to determine the wear rate of industrial ceramics. It takes into account the ceramics’ mechanical and thermophysical properties, the resistance to cracking, the stress-strain state, the thermal condition of the rubbing bodies, and the effect of the environment. The proposed dependence is compared with the available semiempirical dependencies of the ceramics’ wear rate.  相似文献   

15.
Friction and wear characteristics of partially stabilized zirconia (PSZ) fretted against itself and against high carbon steel were investigated. The results for the transformation toughened PSZ ceramics are compared with the behaviour of more brittle alumina ceramic under the same test conditions. Fretting tests in air were carried out on a high frequency wear test rig at room temperature using a cross-cylinder configuration. It was found that both the oxide ceramics were more resistant to fretting wear than the steel. Surface cracking was observed on the alumina wear scars while microfracture and delamination dominated on the PSZ wear scars. When metallic samples were fretted against ceramics, metallic film transfer to the ceramic surfaces occurred.  相似文献   

16.
The friction and wear characteristics of combinations of silicon nitride, alumina and AISI 52100 steel in the presence of mineral oil containing anti-wear, dispersant and detergent additives have been investigated in a tri-pin-on-disc machine. The tests were carried out at a nominal temperature of 100°C for a range of sliding speeds, loads and total sliding distances. In Part II of this two-part paper a comparison will be made between the tribological performance of these sliding pairs of materials in mineral oil and ester based lubricant environments. The results of the investigation showed that the alumina performed relatively poorly under these test conditions, whereas silicon nitride showed good potential as an improved wear resisting material compared with 52100 steel. Wear factors of the order of 10−10 mm3/Nm were deduced for the alumina, while values as low as 10−11 mm3/Nm were typical of the silicon nitride sliding against 52100 steel discs. The alumina pins wore by a process of brittle fracture at the surface, whereas the silicon nitride pins wore primarily by a tribochemical polishing mechanism. The rate of tribo-chemical wear was found to be proportional to the nominal contact area.  相似文献   

17.
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined.The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.  相似文献   

18.
On the mechanisms of various fretting wear modes   总被引:1,自引:0,他引:1  
According to relative motion directions for a ball-on-flat contact, there are four fundamental fretting wear modes, e.g., tangential, radial, torsional and rotational modes. In this paper, the mechanisms of these four fundamental fretting wear modes, particularly for the later three modes, have been reviewed from results obtained by the authors in combination with results from literature. Some general features have been reported. Differences both in running and degradation behavior have been discussed in detail. Results showed that some similar laws for three fretting regimes (partial slip regime, mixed regime and slip regime), fretting maps (running condition fretting map and material response fretting map), wear and cracking mechanisms obtained from the classic mode (i.e. tangential fretting) were also identified and useful to characterize the other modes. Nevertheless, the occurrence of relative slip for the radial fretting, the formation of mixed regime for the torsional fretting, the evolution of surface morphology for the rotational fretting were quite different compared to that of the classical fretting mode.  相似文献   

19.
Microstructure and abrasive wear in silicon nitride ceramics   总被引:4,自引:0,他引:4  
C. P. Doan  J. A. Hawk 《Wear》2001,250(1-12):256-263
It is well known that abrasive wear resistance is not strictly a materials property, but also depends upon the specific conditions of the wear environment. Nonetheless, characteristics of the ceramic microstructure do influence its hardness and fracture toughness and must, therefore, play an active role in determining how a ceramic will respond to the specific stress states imposed upon it by the wear environment. In this study, the ways in which composition and microstructure influence the abrasive wear behavior of six commercially-produced silicon nitride based ceramics are examined. Results indicate that microstructural parameters, such as matrix grain size and orientation, porosity, and grain boundary microstructure, and thermal expansion mismatch stresses created as the result of second phase formation, influence the wear rate through their effect on wear sheet formation and subsurface fracture. It is also noted that the potential impact of these variables on the wear rate may not be reflected in conventional fracture toughness measurements.  相似文献   

20.
This review considers what inferences regarding the mechanism of wear can be derived from recent investigations into the functioning of machine elements operating under conditions representative of engineering practice. Among the subjects discussed are particle analysis, surface texture effects, stress system, thermal effects, chemical aspects of wear, and ehd effects  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号