首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
江苏省句容抽水蓄能电站上水库沥青混凝土面板堆石坝最大坝高182.3 m,目前在抽水蓄能电站中还没有该类坝型坝高超过100 m的设计与实践经验,有必要遵循高堆石坝的设计理念,从坝坡稳定、渗流控制、变形控制、面板及连接板设计等多方面进行研究,从而确定技术方案.由于坝体利用库盆开挖的全、强风化玢岩岩脉混合料分区填筑,因而提出...  相似文献   

2.
泰安抽水蓄能电站上水库由砼面板堆石坝、上库进/出水口、库盆及其防渗设施等组成。除大坝外,库盆三面均为开挖的岩石边坡,大坝上游和库右岸边坡采用钢筋砼面板防渗,库盆采用土工膜防渗体系,其余边坡采用喷砼护坡。面板砼工程量共25442.12m^3,其中大坝面板砼9371.3m^3,库岸面板砼16070.82m^3。面板坡度1:1.5,坡长约65.0m。设计要求:面板砼设计指标为C25W8F300,骨料最大粒径为40mm(二级配),最大水灰比0.40,坍落度3~7cm,含气量5%左右,允许掺加不大于15%的Ⅰ级粉煤灰。  相似文献   

3.
响水涧抽水蓄能电站上水库主坝为混凝土面板堆石坝,按照充分利用库盆扩容开挖料上坝,达到土石方挖填平衡的指导思想,根据坝体变形、渗流特性及坝体稳定等要求,结合坝基地形条件,进行合理的坝体分区及坝料设计,施工阶段结合料源实际情况对坝体分区进行了优化设计,节省了工程投资。设计计算、施工期监测和反演分析以及运行期监测成果表明:坝体总体变形量较小,应力分布符合类似工程一般规律,面板挠度和应力、接缝变形均在允许范围之内。  相似文献   

4.
巴贡水电站位于马来西亚沙捞越州中部拉让江支流巴鲁伊河上。大坝为混凝土面板堆石坝,坝顶高程为235.00 m,最大坝高202 m,是目前已建和在建的200 m级以上面板堆石坝之一。坝高库大,填筑材料主要由杂砂岩和部分页岩(泥岩)组成,坝体变形尤其是后期变形,坝体材料分区、压实标准及变形控制,适应坝体变形的止水结构,面板设计,大坝填筑施工期间雨季时段长,降雨量大,解决大坝施工期反渗排水问题等是设计工作中的重点和难点。已有的监测成果表明:在巴贡面板堆石坝的设计、施工中所采用的技术是合适的。  相似文献   

5.
十三陵抽水蓄能电站土建工程采用挖填相结合方式兴建,坝体填筑石料全部来自池盆,石料开挖和填筑月施工强度分别达到37万m3和28.2万m3,施工期和运行期坝体沉降、水平位移及沿坝基位移的观测值均满足设计标准.上池为钢筋混凝土面板全池防渗,采用无轨滑模施工,混凝土面板月浇筑量达2.82万m3,混凝土抗压、抗渗、抗冻指标符合设计要求.上池土建工程地质条件变化对上池工程建设极为不利,经采用抗滑桩、锚索、灌浆和混凝土挡墙等多种施工技术措施处理后,得到圆满解决.  相似文献   

6.
天生桥一级水电站混凝土面板堆石坝,坝高178m。文章介绍面板坝的坝体材料分区、坝料、面板、趾板以及面板分缝和止水等设计,可供同类坝型设计参考。  相似文献   

7.
陈振文 《水力发电》2004,30(1):33-39
珊溪水库混凝土面板堆石坝建在最大厚度24m的河流冲积层上,利用了天然砂砾石料作为筑坝材料。对坝体分区、坝料选择和基础覆盖层的处理,混凝土面板防裂设计,坝体反向排水设计,坝体变形观测设计进行了大量的研究,力求做到工程安全,结构完善,降低造价,便于施工。  相似文献   

8.
我国特高面板堆石坝的建设与技术展望   总被引:2,自引:2,他引:0  
国内2000年后已建和在建的200m级高面板堆石坝,从堆石料原岩选择、孔隙率控制、坝体断面分区、面板和趾板防裂控制等设计技术方面及碾压设备选型、坝体预沉降控制、施工填筑分期等施工技术方面,采取了一系列行之有效的措施,取得了坝体变形小、面板裂缝少等成效。借此,对300m级特高面板堆石坝技术作了设想,提出了尚需研究的课题。  相似文献   

9.
清江水布垭面板坝渗流控制技术创新与实践   总被引:1,自引:1,他引:0  
水布垭面板坝坝高233 m,是世界上最高的面板坝,工程论证之初跨越已建最高面板坝近50 m,传统的设计理论与经验已经不能满足坝体防渗体系设计要求。通过系统的试验研究,提出了对于超高面板坝采取“控制坝体变形与提高防渗体适应变形能力并重”的设计理念,以及优化面板分缝、改进止水结构和面板混凝土采用优选的高性能混凝土等综合措施,有效保障了水布垭面板坝的防渗安全,自2006年蓄水运用以来,大坝运行正常。  相似文献   

10.
 水布垭砼面板堆石坝,坝高233m,系当今世界同类坝型中最高的坝。面板堆石坝的设计以坝体和面板所产生的变形量为控制条件;堆石体高密实度和低孔隙率是减小坝体和面板变形的关键。通过水布垭面板堆石坝的现场填筑碾压试验,获得了合适的施工碾压参数,从而确保堆石体的高密实度。  相似文献   

11.
宝泉抽水蓄能电站装机容量1200MW,由上水库,输水发电系统和下水库等建筑物组成。上水库大坝采用沥青混凝土面板堆石坝,库盆采用全面防渗方案,以减少渗漏损失,设计优化后上水库工程采用的工程布置方案,不仅对工程施工和施工导流十分有利,而且还有效地解决了超标准洪水和固体径流问题。  相似文献   

12.
南东水电站大坝是一座重力坝工程,坝高34.7 m。大坝建成试蓄水期间,出现基础渗漏、坝体漏水等问题。为此,对南东水电站大坝渗漏原因做了初步论证研究。经现场观察分析认为,帷幕灌浆质量没有达到设计要求、施工质量差等是大坝渗漏的主要原因。应力复核计算结果表明,电站重力坝设计不满足现行规范要求,需采取进一步的安全加固工程措施。  相似文献   

13.
户宋河电站大坝分主坝和副坝,都是均质土坝,主坝高45m,副坝高18m,主坝坝体内设“L”型排水体。大坝工程1993年7月1日开工,1996年10月22日水库下闸蓄水,总的工期四年零三个月。在施工过程中,注意土料的开采,不合格的土料坚决不要。上坝时每层土的填筑厚度,碾压遍数,以及土料的物理力学指标,均严格控制。土料的最优含水量掌握在14.2%~24.4%,最大干密度在1.58~1.78g/之间,以保证土坝的施工质量。  相似文献   

14.
火甲水库主坝渗漏,严重危及大坝安全。为此,采用高压喷射灌浆,营造混凝土防渗墙,并结合土工织物铺设防渗堵漏,取得了较满意的防渗堵漏效果。  相似文献   

15.
某黏土心墙坝在蓄水期间,出现渗流量较大、坝体渗流、绕坝渗流增大等现象。为了寻找原因,通过对某黏土心墙坝的环境量、坝体渗流、绕坝渗流、渗流量等原型监测数据进行分析,得到渗流量、坝体坝基渗压、绕坝渗流等监测成果。为进一步分析渗流来源,对渗流量进行模型分析。结果表明各监测成果互为印证,受库水位影响显著;库水位是影响渗流量大小及变化的主要因素,降雨量是次要因素,其中,库水位对渗流量的影响主要是通过两岸绕坝渗流,其次是通过坝体坝基渗流。库水位对渗流量的影响既是即时的又是持续的。  相似文献   

16.
针对红江水库大坝安全鉴定报告书及核查单位的水库核查意见指出主坝的问题,对主坝不同部位进行除险加固设计,通过方案的比较,最终选择培厚上游坡+垂直防渗方案,保证了主坝设计的安全和经济合理性。实施后,经过1年多的运行,主坝存在问题得以解决,外坝坡明显干燥,坝脚观测渗流量由原来的13.1 L/s减少到5.6 L/s(水库水位184.95 m)。  相似文献   

17.
土石坝渗流与稳定分析是土石坝设计中的关键环节,据大坝与水库失事事故统计,有1/4失事是由渗流问题引起的。稳定分析是确定大坝设计剖面和评价坝体安全的主要依据。对胜利水库进行渗流及稳定分析,为解决水库大坝渗漏和稳定等问题提供参考依据。  相似文献   

18.
渗流控制是土石坝工程建设面临的关键问题之一,渗流分析是实现渗控效应评价和渗控优化设计的主要途径。针对黑河金盆水库工程区复杂的地质条件和渗控措施,建立包含主(副)坝、坝基、库盆和左岸单薄山梁的三维渗流计算模型。为确保数值计算的稳定性和收敛性,采用Signorini型变分不等式方法,对黑河金盆水库坝区进行长期稳定渗流精细模拟。基于实测结果与数值计算成果的对比分析,论证了Signorini型变分不等式方法在土石坝枢纽渗流分析中的有效性和正确性。基于数值计算结果深入分析了坝区的渗控效应及渗透稳定性,研究了渗控效应对黏土心墙、帷幕、山岩材料渗透参数的敏感性。结果表明:黑河金盆水库坝区各分区渗流量和各关键部位的最大水力坡降均在安全稳定范围内,工程渗控措施效果显著;坝区渗控效应对防渗帷幕以及山体材料渗透系数的变化较为敏感,坝体内部总水头及关键部位水力坡降随黏土心墙渗透系数的增加而增加。研究成果对土石坝坝区整体渗流分析及渗控优化设计具有借鉴意义。  相似文献   

19.
宝泉抽水蓄能电站上水库系利用天然河道开挖、筑坝而成,由于库底覆盖层为透水性较强的砂卵石层,且有数条大断层穿过坝基,采用了粘土铺盖护底、沥青混凝土护岸与沥青混凝土面板坝相结合的全库盆联合防渗形式,这在国内为首次采用。宝泉电站上水库防渗体系的设计中,各种防渗结构的设计参数和接头形式,对类似工程有参考价值。  相似文献   

20.
国内早期修建的土石坝因设计、施工、运行管理等方面存在问题,在长期内外因素影响下,坝体安全受到严重影响,应对此类大坝及时进行安全性鉴定。结合湖北省十堰市七里沟水库工程实例,从水库的工程地质、防洪标准、运行管理、工程质量、渗流安全及结构安全等主要方面,对该水库工程的安全性进行全面复核和评价,为其他类似工程安全鉴定提供参考和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号