首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182-3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended alpha-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.  相似文献   

2.
3.
The endoribonuclease RNase E is believed to initiate the degradation of many mRNAs in Escherichia coli, yet the mechanism by which it recognizes cleavage sites is poorly understood. We have prepared derivatives of the mRNA encoding ribosomal protein S20 which contain a single major RNase E cleavage site at residues 300/301 preceded by variable 5' extensions. Three of these RNAs are cleaved in vitro with significantly reduced efficiencies relative to the intact S20 mRNA by both crude RNase E and pure Rne protein (endonuclease component of RNase E). In all three substrates as well as in the full-length mRNA the major cleavage site itself remains single-stranded. One such substrate (t84D) contains a 5' stem-loop structure characterized by three noncanonical A-G pairs. Removal or denaturation of the stem restores efficient cleavage at the major RNase E site. The other two contain single-stranded 5'-termini but apparently lack cleavage sites near the termini. Our data show that sensitivity to RNase E can be influenced by distant structural motifs in the RNA and also suggest a model in which the initial recognition and cleavage of a substrate near its 5' end facilitates sequential cleavages at more distal sites. The model implies that RNase E contains at least a dimer of the Rne subunit and that the products of the first cleavage are retained by Rne prior to the second cleavage.  相似文献   

4.
A relatively thermostable 22-kDa endoribonuclease (MAR1) was purified more than 10,000-fold from a mitochondrial extract of Leishmania tarentolae and the gene cloned. The purified nuclease has a Km of 100-145 +/- 33 nM and a Vmax of 1.8-2.9 +/- 2 nmol/min, depending on the RNA substrate, and yields a 3'-OH and a 5'-phosphate. Cleavage was limited to several specific sites in the substrate RNAs tested, but cleavage of pre-edited RNAs was generally independent of the addition of cognate guide RNA. The MAR1 gene was expressed in Escherichia coli or in L. tarentolae cells, and the recombinant protein was affinity-purified. The cleavage specificity of the recombinant enzyme from L. tarentolae was identical to that of the native enzyme. The single copy MAR1 gene maps to an 820-kilobase pair chromosome and contains an open reading frame of 579 nucleotides. The 18-amino acid N-terminal sequence shows characteristics of an uncleaved mitochondrial targeting sequence. Data base searching revealed two homologues of MAR1 corresponding to unidentified open reading frames in Caenorhabditis elegans (GenBankTM accession number Z69637) and Archaeoglobus fulgidus (GenBankTM accession number AE000943). The function of MAR1 in mitochondrial RNA metabolism in L. tarentolae remains to be determined.  相似文献   

5.
6.
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.  相似文献   

7.
8.
The rotavirus nonstructural phosphoprotein NSP5 is encoded by a gene in RNA segment 11. Immunofluorescence analysis of fixed cells showed that NSP5 polypeptides remained confined to viroplasms even at a late stage when provirions migrated from these structures. When NSP5 was expressed in COS-7 cells in the absence of other viral proteins, it was uniformly distributed in the cytoplasm. Under these conditions, the 26-kDa polypeptide predominated. In the presence of the protein phosphatase inhibitor okadaic acid, the highly phosphorylated 28- and 32- to 35-kDa polypeptides were formed. Also, the fully phosphorylated protein had a homogeneous cytoplasmic distribution in transfected cells. In rotavirus SA11-infected cells, NSP5 synthesis was detectable at 2 h postinfection. However, the newly formed 26-kDa NSP5 was not converted to the 28- to 35-kDa forms until approximately 2 h later. Also, the protein kinase activity of isolated NSP5 was not detectable until the 28- and 30- to 35-kDa NSP5 forms had been formed. NSP5 immunoprecipitated from extracts of transfected COS-7 cells was active in autophosphorylation in vitro, demonstrating that other viral proteins were not required for this function. Treatment of NSP5-expressing cells with staurosporine, a broad-range protein kinase inhibitor, had only a limited negative effect on the phosphorylation of the viral polypeptide. Staurosporine did not inhibit autophosphorylation of NSP5 in vitro. Together, the data support the idea that NSP5 has an autophosphorylation activity that is positively regulated by addition of phosphate residues at some positions.  相似文献   

9.
Proteolytic processing of the polyprotein encoded by mRNA 1 is an essential step in coronavirus RNA replication and gene expression. We have previously reported that an open reading frame (ORF) 1a-specific proteinase of the picornavirus 3C proteinase group is involved in processing of the coronavirus infectious bronchitis virus (IBV) 1a/1b polyprotein, leading to the formation of a mature viral protein of 100 kDa. We report here the identification of a novel 10-kDa polypeptide and the involvement of the 3C-like proteinase in processing of the ORF 1a polyprotein to produce the 10-kDa protein species. By using a region-specific antiserum, V47, raised against a bacterial-viral fusion protein containing IBV sequence encoded between nucleotides 11488 and 12600, the 10-kDa polypeptide was detected in lysates from both IBV-infected and plasmid DNA-transfected Vero cells. Coexpression, deletion, and mutagenesis studies showed that this novel polypeptide was encoded by ORF 1a from nucleotide 11545 to 11878 and was cleaved from the 1a polyprotein by the 3C-like proteinase domain. Evidence presented suggested that a previously predicted Q-S (Q3783 S3784) dipeptide bond encoded by ORF 1a between nucleotides 11875 and 11880 was responsible for the release of the C terminus of the 10-kDa polypeptide and that a novel Q-N (Q3672 N3673) dipeptide bond encoded between nucleotides 11542 and 11547 was responsible for the release of the N terminus of the 10-kDa polypeptide.  相似文献   

10.
11.
12.
Earlier work identified a series of accessory polypeptides of 150, 74, 59, 57, 55, 53, 50, and 45 kDa copurifying with cytoplasmic dynein. In the present study immunoprecipitation of the 50-kDa polypeptide from bovine brain cytosol with a specific monoclonal antibody revealed coprecipitating components of 150, 135, 62, and 45 kDa, which were completely distinct from the polypeptides immunoprecipitated using an antibody to the well established 74-kDa cytoplasmic dynein subunit. The 150- and 135-kDa polypeptides reacted with an antibody to p150Glued, the mammalian homologue of the Drosophila Glued gene. N-terminal microsequencing of tryptic peptides of the major 45-kDa component of the complex revealed it to be the alpha-isoform of centractin, a novel form of actin. Immunoblotting of sucrose gradient-fractionated brain cytosol revealed p150Glued, p50, and centractin to cosediment exclusively at 20 S. Immunofluorescence microscopy using antibody to p150Glued revealed centrosomal staining, which was abolished by microtubule depolymerization. Together these results reveal the 50-kDa polypeptide to be part of a cytosolic complex distinct from cytoplasmic dynein. However, the immunolocalization data indicate an association with microtubule minus ends, suggesting a possible interaction with cytoplasmic dynein in the cell.  相似文献   

13.
Of the four genes (nrtABCD) required for active transport of nitrate in the cyanobacterium Synechococcus sp. strain PCC 7942, nrtBCD encode membrane components of an ATP-binding cassette transporter involved in the transport of nitrite as well as of nitrate, whereas nrtA encodes a 45-kDa cytoplasmic membrane protein, the biochemical function of which remains unclear. Characterization of the nrtA deletional mutants showed that the 45-kDa protein is essential for the functioning of the nitrate/nitrite transporter. A truncated NrtA protein lacking the N-terminal 81 amino acids, expressed in Escherichia coli cells as a histidine-tagged soluble protein, was shown to bind nitrate and nitrite with high affinity (Kd = 0.3 microM). Immunoblotting analysis using the antibody against the 45-kDa protein revealed a 48-kDa precursor of the protein, which accumulated in the cyanobacterial cells treated with globomycin, an antibiotic that specifically inhibits cleavage of the signal peptide of lipoprotein precursors. These findings indicated that the nrtA gene product is a nitrate- and nitrite-binding lipoprotein. The N-terminal sequences of putative cyanobacterial substrate-binding proteins suggested that lipoprotein modification of substrate-binding proteins of ATP-binding cassette transporters is common in cyanobacteria.  相似文献   

14.
15.
Eukaryotic RNases H from Saccharomyces cerevisiae , Schizosaccharomyces pombe and Crithidia fasciculata , unlike the related Escherichia coli RNase HI, contain a non-RNase H domain with a common motif. Previously we showed that S.cerevisiae RNase H1 binds to duplex RNAs (either RNA-DNA hybrids or double-stranded RNA) through a region related to the double-stranded RNA binding motif. A very similar amino acid sequence is present in caulimovirus ORF VI proteins. The hallmark of the RNase H/caulimovirus nucleic acid binding motif is a stretch of 40 amino acids with 11 highly conserved residues, seven of which are aromatic. Point mutations, insertions and deletions indicated that integrity of the motif is important for binding. However, additional amino acids are required because a minimal peptide containing the motif was disordered in solution and failed to bind to duplex RNAs, whereas a longer protein bound well. Schizosaccharomyces pombe RNase H1 also bound to duplex RNAs, as did proteins in which the S.cerevisiae RNase H1 binding motif was replaced by either the C.fasciculata or by the cauliflower mosaic virus ORF VI sequence. The similarity between the RNase H and the caulimovirus domain suggest a common interaction with duplex RNAs of these two different groups of proteins.  相似文献   

16.
17.
The Cry1A insecticidal crystal protein (protoxin) from six subspecies of Bacillus thuringiensis as well as the Cry1Aa, Cry1Ab, and Cry1Ac proteins cloned in Escherichia coli was found to contain 20-kilobase pair DNA. Only the N-terminal toxic moiety of the protoxin was found to interact with the DNA. Analysis of the crystal gave approximately 3 base pairs of DNA per molecule of protoxin, indicating that only a small region of the N-terminal toxic moiety interacts with the DNA. It is proposed that the DNA-protoxin complex is virus-like in structure with a central DNA core surrounded by protein interacting with the DNA with the peripheral ends of the C-terminal region extending outward. It is shown that this structure accounts for the unusual proteolysis observed in the generation of toxin in which it appears that peptides are removed by obligatory sequential cleavages starting from the C terminus of the protoxin. Activation of the protoxin by spruce budworm (Choristoneura fumiferana) gut juice is shown to proceed through intermediates consisting of protein-DNA complexes. Larval trypsin initially converts the 20-kilobase pair DNA-protoxin complex to a 20-kilobase pair DNA-toxin complex, which is subsequently converted to a 100-base pair DNA-toxin complex by a gut nuclease and ultimately to the DNA-free toxin.  相似文献   

18.
19.
The amplification of DNA from Chlamydia trachomatis by PCR with degenerated primers yielded a 345-bp fragment of the putative RNase P RNA gene. From the deduced DNA sequence of this gene in C. trachomatis, a modified primer pair was designed. The primer pair was subsequently used to obtain the corresponding gene products from Chlamydia pneumoniae and Chlamydia psittaci. Sequence comparisons revealed similarities of 76.6% between C. trachomatis and C. pneumoniae, 79.5% between C. trachomatis and C. psittaci, and 84.7% between C. pneumoniae and C. psittaci. Furthermore, the three species were differentiated by fragment length polymorphism analysis after restriction enzyme cleavage of the PCR products. Sequence variations among 14 serotypes of C. trachomatis were confined to one purine base substitution in the putative RNase P RNA gene of lymphogranuloma venereum strains L1 to L3. Complete sequence similarity was found for nine strains of C. pneumoniae of different geographic origins. Taken together, our results indicate a possibility of the general application of this method in clinical bacteriology. Analysis of the secondary structures of the putative RNase P RNA genes from the different Chlamydia species suggested that a novel structural element in the domain of RNase P RNA is involved in base pairing with the 3'-terminal CCA motif of a tRNA precursor. This structure has not previously been found among RNase P RNAs of members of the division Bacteria.  相似文献   

20.
Ribonuclease H activities present in fully grown Xenopus oocytes were investigated by using either liquid assays or renaturation gel assays. Whereas the test in solution detected an apparently unique class I ribonuclease H activity, the activity gels did not detect this enzyme but another one with the molecular weight expected for a class II ribonuclease H. The ribonuclease HI was found to be primarily concentrated in the germinal vesicle, but around 5% of this activity was detectged in the cytoplasm and may correspond to the activity involved in antisense oligonucleotide-mediated destruction of messenger RNAs. The concentration of this class I ribonuclease H in oocytes is similar to that in somatic cells. The class II ribonuclease H remained undetectable by the test in solution because its activity was cryptic. On activity gel, a polypeptide with the apparent molecular mass of 32 kDa, expected for a ribonuclease HII, was found to be concentrated in mitochondria although no RNase H activity could be detected by using the liquid assay. Based on sedimentation studies, we hypothesize that the apparent absence of RNase H activity in solution could be the result of the association of this 32-kDa polypeptide with other polypeptides, or possibly nucleic acids, to form a multimer of, until now, unknown function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号