共查询到20条相似文献,搜索用时 73 毫秒
1.
2.
群体智能是目前智能领域非常活跃的新兴研究领域,微粒群算法作为其典型的实现形式,受到普遍的关注.本文分析了基本微粒群算法的特点,改善了动态自适应微粒群优化算法,实验结果证明该方法的优越性. 相似文献
3.
4.
粒子群优化算法及其应用 总被引:20,自引:0,他引:20
粒子群优化(PSO)算法是一种新颖的演化算法,它属于一类随机全局优化技术,PSO算法通过粒子间的相互作用在复杂搜索空间中发现最优区域。PSO的优势在于简单而又功能强大。介绍了基本的PSO算法、研究现状及其应用,并讨论将来可能的研究内容。 相似文献
5.
粒子群优化(Particle Swarm Optimization,PSO)算法在复杂多峰函数可行域空间搜索时极易陷入局部极值点.研究表明改变种群拓扑结构和调整算法参数有助于改善种群的多样性,但是目前研究中少有同时考虑种群全局拓扑结构和局部粒子个体能力.本文提出一种具有异构分簇特性的自适应PSO算法.该算法采用K-均值聚类算法对种群进行动态分簇,形成多异构子群,并采用Ring型拓扑结构进行子群间信息流通.而后采用基于寻解水平评价的粒子自适应参数调整策略进行个体调整.通过实验分析表明该算法能够提高粒子群优化的种群的多样性、粒子活性、搜索能力和收敛性能,同时也降低了算法对参数初值的依赖性. 相似文献
6.
传统粒子滤波算法中在重要性采样部分存在采样粒子位置不精确的问题,可用粒子群优化算法优化,但目前的标准粒子群优化粒子滤波算法会出现粒子局部寻优的情况。对此对算法中的惯性权重和学习因子同时采取自适应调整的方法,平衡粒子的搜索能力以减少这种情况的出现,并且为了解决算法优化后因粒子聚集而造成的多样性缺失问题,对粒子进行随机变异以提高粒子多样性。仿真结果表明,经过改进后的优化算法可有效提高粒子滤波算法的准确性,使跟踪误差减小。 相似文献
7.
8.
粒子群优化算法是模拟鸟类觅食行为思想的随机搜索算法,主要是通过迭代寻找最优解。将粒子随机初始化改进为固定初始化,并将动态分群思想引入粒子群优化算法将整个种群划分为三个子群,根据不同群中粒子的情况自适应地选择惯性权重,以此提高粒子的搜索能力。仿真实验结果表明,该方法大大提高了搜索过程中粒子的多样性,避免粒子陷入局部最优,提高了求解的速度和精度。 相似文献
9.
针对粒子群算法易陷入"局部最优解"和搜索精度逐渐降低的缺点,提出了基于交叉和自适应权重的混合粒子群优化算法.加入的交叉操作使得种群在粒子数目不变的情况下多样性得以维持,而自适应权重有效地平衡了整个算法的全局与局部搜索能力.通过函数测试实验表明,新的算法能够避免早熟收敛问题,有效地提高了其寻优能力. 相似文献
10.
11.
12.
自适应变异的粒子群优化算法 总被引:209,自引:5,他引:209
本文提出了一种新的基于群体适应度方差自适应变异的粒子群优化算法(AMPSO).该算法在运行过程中根据群体适应度方差以及当前最优解的大小来确定当前最佳粒子的变异概率,变异操作增强了粒子群优化算法跳出局部最优解的能力.对几种典型函数的测试结果表明:新算法的全局收搜索能力有了显著提高,并且能够有效避免早熟收敛问题. 相似文献
13.
14.
根据粒子群优化(PSO)算法的社会心理学指导思想并结合自适应FIR滤波器的特点,设计了合适的惯性项、认知项与社会项表达式,并将之应用于组合自适应滤波器的子自适应滤波器更新中,提出了基于PSO算法思想的组合自适应滤波算法,分析了新算法的计算复杂度。理论分析与不同条件下的自适应系统辨识仿真结果表明,新算法可以在不明显提高计算量的条件下较好地平衡自适应滤波器的稳态失调与跟踪能力,其收敛性能优于其它几种较新的LMS算法。 相似文献
15.
16.
本文提出了设计一种基于自适应变异粒子群优化算法的振动信号的自适应滤波模型,然后重点研究了自适应数字滤波器设计的粒子群优化算法及其实现步骤。该滤波模型在计算机仿真测试中,获得了很高的效率和良好的结果。 相似文献
17.
提出了一种新颖的基于粒子群优化和多级检测的混合算法的多用户检测器。介绍了最佳多用户检测模型以及粒子群优化算法的基本思想。进行了理论依据和仿真性能分析。仿真结果表明:该检测器在误码率性能上明显优于传统检测器和解相关检测器,在抗“远一近效应”上也优于传统检测器与多级检测器,计算复杂度较低。 相似文献
18.
杜清福 《太赫兹科学与电子信息学报》2016,14(2):276-281
针对粒子群优化(PSO)算法随着维数增加而导致的收敛速度慢,容易陷入局部最优的问题,提出了一种合作式粒子群(CPSO)算法。通过多粒子群不同的组态向量合作,显著改善了标准算法的早熟问题。利用标准测试函数对CPSO算法、协同进化遗传算法(CCGA)、遗传算法(GA)、PSO算法进行比较测试,结果表明,CPSO算法在多个基准优化问题方面显示了较佳性能。 相似文献
19.
20.
基于单纯形法的量子粒子群优化算法 总被引:1,自引:2,他引:1
针对粒子群优化算法容易陷入局部极值点,进化后期收敛慢和优化精度较差等缺点,提出了将单纯形搜索法与量子粒子群算法混合的改进算法,更好的平衡了全局搜索和局部搜索能力.仿真结果表明,该算法效率高、优化性能好,其性能远远优于一般的粒子群算法与量子粒子群算法. 相似文献