首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
新的混沌粒子群优化算法   总被引:9,自引:0,他引:9  
针对传统粒子群算法初期收敛较快,而在后期容易陷入早熟、局部最优的特点,提出了一种新的混沌粒子群优化算法,不同于己有的混沌粒子群算法的简单粒子序列替换,该算法将混沌融入到粒子运动过程中,使粒子群在混沌与稳定之间交替运动,逐步向最优点靠近。并提出了一种新的混沌粒子群数学模型,进行了非线性动力学分析。数值测试结果表明该方法能跳出局部最优,极大提高了计算精度,进一步提高了全局寻优能力。  相似文献   

2.
群体智能是目前智能领域非常活跃的新兴研究领域,微粒群算法作为其典型的实现形式,受到普遍的关注.本文分析了基本微粒群算法的特点,改善了动态自适应微粒群优化算法,实验结果证明该方法的优越性.  相似文献   

3.
王丹 《电子测试》2014,(23):38-39,37
在线性递减权重粒子群优化算法(LDWPSO)中提到了中心粒子这一概念,进而提出了中心粒子群优化算法(中心PSO)。在线性递减权重粒子群优化算法中,中心粒子不像其它一般的粒子,中心粒子没有明确的速度,并且被始终置于粒子群的中心。此外,在神经网络训练算法中比较中心粒子群优化算法和线性递减权重粒子群优化算法,结果表明:中心粒子群优化算法的性能优于线性递减权重粒子群优化算法。  相似文献   

4.
粒子群优化算法及其应用   总被引:20,自引:0,他引:20  
范娜  云庆夏 《信息技术》2006,30(1):53-56
粒子群优化(PSO)算法是一种新颖的演化算法,它属于一类随机全局优化技术,PSO算法通过粒子间的相互作用在复杂搜索空间中发现最优区域。PSO的优势在于简单而又功能强大。介绍了基本的PSO算法、研究现状及其应用,并讨论将来可能的研究内容。  相似文献   

5.
具有异构分簇的粒子群优化算法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李文锋  梁晓磊  张煜 《电子学报》2012,40(11):2194-2199
 粒子群优化(Particle Swarm Optimization,PSO)算法在复杂多峰函数可行域空间搜索时极易陷入局部极值点.研究表明改变种群拓扑结构和调整算法参数有助于改善种群的多样性,但是目前研究中少有同时考虑种群全局拓扑结构和局部粒子个体能力.本文提出一种具有异构分簇特性的自适应PSO算法.该算法采用K-均值聚类算法对种群进行动态分簇,形成多异构子群,并采用Ring型拓扑结构进行子群间信息流通.而后采用基于寻解水平评价的粒子自适应参数调整策略进行个体调整.通过实验分析表明该算法能够提高粒子群优化的种群的多样性、粒子活性、搜索能力和收敛性能,同时也降低了算法对参数初值的依赖性.  相似文献   

6.
传统粒子滤波算法中在重要性采样部分存在采样粒子位置不精确的问题,可用粒子群优化算法优化,但目前的标准粒子群优化粒子滤波算法会出现粒子局部寻优的情况。对此对算法中的惯性权重和学习因子同时采取自适应调整的方法,平衡粒子的搜索能力以减少这种情况的出现,并且为了解决算法优化后因粒子聚集而造成的多样性缺失问题,对粒子进行随机变异以提高粒子多样性。仿真结果表明,经过改进后的优化算法可有效提高粒子滤波算法的准确性,使跟踪误差减小。  相似文献   

7.
随着社会经济建设进程的快速发展,人们的生活水平得到提高,现代化城市建设的进程促使房地产建筑项目数量增加,我国逐渐成为全世界建筑行业发展最迅速的发展中国家之一,同时也加剧了房地产市场竞争的激烈程度。而优化房屋结构设计,能增加企业效益,满足居民需求。文章将通过粒子群优化算法对房屋布局进行优化。  相似文献   

8.
陈炜 《信息技术》2015,(1):101-104
粒子群优化算法是模拟鸟类觅食行为思想的随机搜索算法,主要是通过迭代寻找最优解。将粒子随机初始化改进为固定初始化,并将动态分群思想引入粒子群优化算法将整个种群划分为三个子群,根据不同群中粒子的情况自适应地选择惯性权重,以此提高粒子的搜索能力。仿真实验结果表明,该方法大大提高了搜索过程中粒子的多样性,避免粒子陷入局部最优,提高了求解的速度和精度。  相似文献   

9.
针对粒子群算法易陷入"局部最优解"和搜索精度逐渐降低的缺点,提出了基于交叉和自适应权重的混合粒子群优化算法.加入的交叉操作使得种群在粒子数目不变的情况下多样性得以维持,而自适应权重有效地平衡了整个算法的全局与局部搜索能力.通过函数测试实验表明,新的算法能够避免早熟收敛问题,有效地提高了其寻优能力.  相似文献   

10.
粒子群优化算法在海杂波参数优化中的应用   总被引:1,自引:0,他引:1  
以具有对数正态分布和高斯谱特性的海杂波产生为例,根据零记忆非线性变换法(ZMNL)的原理,将海杂波的产生转化为参数优化问题,并用粒子群优化算法(PSO)进行求解,最后还将仿真结果与遗传算法进行了比较。讨论了用PSO进行参数优化的具体实现过程,并找到了较优的滤波器系数,得到满意的杂波谱特性。仿真结果表明,该方法完全可应用到海杂波的产生方法中。  相似文献   

11.
针对目前三维空间传感器部署算法PSO算法存在寻优精度、全局收敛性和收敛速度不能保证的问题,提出了通过惯性权重线性递减策略与动态加速常数自适应策略改进的基于粒子群的WCPSO优化算法,有效地提高了算法的寻优精度和收敛速度。给出了算法的设计方案并进行了来袭路径未知和来袭路径预估情况下的仿真实验,仿真实验结果表明WCPSO算法的优化效果和效率都要优于改进前的PSO算法。  相似文献   

12.
自适应变异的粒子群优化算法   总被引:209,自引:5,他引:209  
吕振肃  侯志荣 《电子学报》2004,32(3):416-420
本文提出了一种新的基于群体适应度方差自适应变异的粒子群优化算法(AMPSO).该算法在运行过程中根据群体适应度方差以及当前最优解的大小来确定当前最佳粒子的变异概率,变异操作增强了粒子群优化算法跳出局部最优解的能力.对几种典型函数的测试结果表明:新算法的全局收搜索能力有了显著提高,并且能够有效避免早熟收敛问题.  相似文献   

13.
多节平行线耦合器的设计需要综合出各节的偶模特性阻抗。应用粒子群优化算法很好地综合出任意阶梯数任意耦合度等波纹时对应的偶模特性阻抗。举例优化了6倍频的耦合度为-35dB耦合器的偶模特性阻抗,并仿真设计了该耦合器。  相似文献   

14.
根据粒子群优化(PSO)算法的社会心理学指导思想并结合自适应FIR滤波器的特点,设计了合适的惯性项、认知项与社会项表达式,并将之应用于组合自适应滤波器的子自适应滤波器更新中,提出了基于PSO算法思想的组合自适应滤波算法,分析了新算法的计算复杂度。理论分析与不同条件下的自适应系统辨识仿真结果表明,新算法可以在不明显提高计算量的条件下较好地平衡自适应滤波器的稳态失调与跟踪能力,其收敛性能优于其它几种较新的LMS算法。  相似文献   

15.
本实验采取基于偏振度(DOP)的PMD监测技术,使用粒子群优化算法(PSO)为逻辑控制算法,控制二级偏振模散补偿器的可变时延线来实现二阶偏振模散(PMD)自适应补偿,取得了良好效果。实验表明相对于固定可变时延线的偏振模散自适应补偿,精度较高,而所用时间稍长。  相似文献   

16.
本文提出了设计一种基于自适应变异粒子群优化算法的振动信号的自适应滤波模型,然后重点研究了自适应数字滤波器设计的粒子群优化算法及其实现步骤。该滤波模型在计算机仿真测试中,获得了很高的效率和良好的结果。  相似文献   

17.
提出了一种新颖的基于粒子群优化和多级检测的混合算法的多用户检测器。介绍了最佳多用户检测模型以及粒子群优化算法的基本思想。进行了理论依据和仿真性能分析。仿真结果表明:该检测器在误码率性能上明显优于传统检测器和解相关检测器,在抗“远一近效应”上也优于传统检测器与多级检测器,计算复杂度较低。  相似文献   

18.
针对粒子群优化(PSO)算法随着维数增加而导致的收敛速度慢,容易陷入局部最优的问题,提出了一种合作式粒子群(CPSO)算法。通过多粒子群不同的组态向量合作,显著改善了标准算法的早熟问题。利用标准测试函数对CPSO算法、协同进化遗传算法(CCGA)、遗传算法(GA)、PSO算法进行比较测试,结果表明,CPSO算法在多个基准优化问题方面显示了较佳性能。  相似文献   

19.
均匀搜索粒子群算法   总被引:9,自引:2,他引:9       下载免费PDF全文
吴晓军  杨战中  赵明 《电子学报》2011,39(6):1261-1266
针对基本粒子群优化算法容易陷入局部最优解的问题,本文定义了PSO粒子搜索中心的概念,并对其随机状态下粒子搜索中心在全局最优解与局部最优解之间的概率密度进行了计算,在此基础上提出了粒子搜索中心在两个最优解之间均匀分布的均匀搜索粒子群算法,并通过7个Benchmark函数与基本PSO算法进行了对比实验及算法分析,实验分析结...  相似文献   

20.
基于单纯形法的量子粒子群优化算法   总被引:1,自引:2,他引:1  
针对粒子群优化算法容易陷入局部极值点,进化后期收敛慢和优化精度较差等缺点,提出了将单纯形搜索法与量子粒子群算法混合的改进算法,更好的平衡了全局搜索和局部搜索能力.仿真结果表明,该算法效率高、优化性能好,其性能远远优于一般的粒子群算法与量子粒子群算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号