首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
对映体的分离在有机合成、动力学、药理学、药效学及农业化学等许多学科领域内具有重要的意义,液相色谱手性固定相法拆分对映体的方法被认为最准确、方便的方法之一,刷型手性固定相是液相色谱中非常重要的一类手性固定相。本文介绍了目前常用的几种刷型手性固定相及其在手性化合物分离中的应用情况。  相似文献   

2.
甲壳素是一种丰富的可再生资源,将甲壳素在碱性条件下脱去乙酰基得到壳聚糖,甲壳素和壳聚糖分子骨架有大量的手性碳原子存在,且含有较多的羟基、乙酰氨基或氨基活性官能团,容易进行化学改性得到有较好手性识别能力的衍生物,且它们能以膜、纤维、凝胶及微球等不同形式出现,可作为各种手性分离介质。概述了近年来甲壳素衍生物作为手性分离介质的重要研究进展,主要包括甲壳素及其衍生物的色谱手性固定相、手性分离膜、分子印迹聚合物。重点介绍了这些手性分离介质的结构、制备及性能,并展望了甲壳素衍生物手性分离介质的研究前景。  相似文献   

3.
合成了含有3,5-二甲基和3,5-二氯取代基团的混合型淀粉(苯基氨基甲酸酯)衍生物(CSP-2),并作为手性体分离材料涂敷在氨丙基化多孔硅胶表面,制得新型高效液相色谱(HPLC)用手性固定相;通过1H核磁共振(1H NMR)和红外光谱(IR)表征衍生物结构;以正己烷-异丙醇(9∶1,v/v)为流动相,对多种手性对映体进行了拆分;结果表明,CSP-2综合了单一取代基团淀粉(苯基氨基甲酸酯)衍生物的手性拆分性能,具有优越的手性分离能力,同时固定相的稳定性大大增强。  相似文献   

4.
利用三氯聚氰活化的氨丙基硅胶与牛血清白蛋白反应,快速而经济地制得牛血清白蛋白手性固定相。在反相模式下,将该手性固定相用于色氨酸的拆分,系统探讨了流动相pH值、柱温、有机修饰剂的种类及含量等对手性拆分的影响。色氨酸在自制牛血清白蛋白手性柱上得到了理想的拆分,分离因子可达4.33。  相似文献   

5.
人血清白蛋白与三氯聚氰活化的氨丙基硅胶反应,制得人血清白蛋白键合手性固定相。反相模式下,色氨酸在该手性固定相上获得理想的拆分,分离因子可达3.51,分离度达5.49。探讨了流动相p H值、有机修饰剂、柱温等对手性拆分的影响。通过前沿分析法对色谱保留机理进行了探讨。  相似文献   

6.
利用三氯聚氰活化的氨丙基硅胶与牛血清白蛋白反应,快速而经济地制得牛血清白蛋白手性固定相。运用前沿分析法,反相模式下获得色氨酸对映体在牛血清白蛋白手性固定相上的平衡吸附量,并将实验数据与Langmuir、bi-Langmuir、Toth和Langmuir-Freundlich四种等温吸附模型进行了拟合,结果显示吸附数据与bi-Langmuir模型最为吻合,进一步说明了该手性固定相对色氨酸存在手性识别和非手性识别两种不同类型的吸附位点。  相似文献   

7.
本文介绍了无载体纤维素三—(4—甲基苯甲酸酯)手性固定相对外消旋药物酮洛芬的拆分且就不同的柱尺寸及装填方式作了比较。为了反映无载体手性固定相的拆分能力,还将无载体柱与有载体柱、自制柱与日本柱作了比较。结果表明:无载体手性固定相对外消旋药物是有拆分能力的,只是其能力低于有载体的。若无载体手性固定相能与高新分离技术(如模拟移动床)相结合,将有望实现外消旋药物的低成本拆分。  相似文献   

8.
黄艳  陈华  周祚万 《材料导报》2008,22(5):38-42
手性聚苯胺是一种特殊的导电聚合物,在分子识别、手性拆分、吸波材料等方面有着潜在的应用.合成高手性聚苯胺的研究方法已成为近年来的研究热点.综述了手性聚苯胺的研究进展,详细介绍了手性聚苯胺的制备方法,包括原位化学氧化聚合法、电化学聚合法、二次掺杂法、模板法、自组装法和低聚物辅助法等,展望了未来的发展方向.  相似文献   

9.
糖类化合物在手性膜分离中的应用   总被引:3,自引:0,他引:3  
糖类化合物作为手性膜分离材料近年引起人们广泛关注.简要介绍了纤维素类、直链淀粉类、海藻酸类、壳聚糖类和环糊精类5种糖类化合物的结构特性,且就其在手性膜分离中的应用进行了全面的综述,重点介绍了各种糖类化合物手性膜的制备及应用,并对其发展前景进行了展望.  相似文献   

10.
手性salen化合物是近几年发展起来的用于不对称催化反应的高效催化剂,自合成以来一直受到人们的关注。目前均相手性salen研究已相对成熟,但距离实现进一步的工业化还有很大差距。手性salen化合物的固载化可望实现手性salen的工业化应用,已成为本领域的研究热点。从无机载体、有机载体和近几年发展起来的有机-无机复合载体3个方面综述了固载手性salen化合物的不同方法及研究进展,并做了分析比较。  相似文献   

11.
The first example of molecularly imprinted chiral stationary phase prepared using a racemic template is shown. N-(3,5-Dinitrobenzoyl)-α-methylbenzylamine (DNB) was chirally discriminated on the molecularly imprinted stationary phase prepared using racemic DNB as the template. A chiral monomer, (S)-(-)-N-methacryloyl-1-naphthylethylamine, was utilized as the functional monomer toward the racemic template, and its chiral recognition ability was, interestingly, found to be enhanced through racemic molecular imprinting. A thermodynamic discussion briefly suggests that the observed chiral recognition ability of the racemic imprinting was proper value.  相似文献   

12.
合成了同时含有3,5-二甲基和3,5-二氯取代基团的纤维素(苯基氨基甲酸酯)衍生物(CSP-1),作为手性体分离材料涂敷在氨丙基化硅胶表面,制得新型高效液相色谱(HPLC)用手性固定相;利用1H核磁共振(1H-NMR)和红外光谱(IR)表征了衍生物结构;以正己烷-异丙醇(体积比9∶1)为流动相,对多种手性对映体进行了拆分。结果表明,CSP-1具有很好的手性体分离能力,综合了单一取代基团纤维素(苯基氨基甲酸酯)衍生物的手性拆分性能。  相似文献   

13.
A simple and rapid screening method of the chiral stationary phase during high-performance liquid chromatography (HPLC) utilizing a quartz crystal microbalance (QCM) has been developed for the chiral separation of a pair of enantiomers. The outline of the method is as follows: a self-assembled monolayer (SAM) is constructed on the gold electrodes of the QCM sensor chips by utilizing the interaction between thiols and gold. The chiral selectors used as chiral stationary phases in the HPLC are then immobilized, and a pseudostationary phase is constructed on the electrodes. Subsequently, the sensors are equilibrated in the solutions, the targeted chiral samples are injected, and the frequency changes are observed. Four kinds of chiral molecules and three kinds of chiral stationary phases were examined in this study. When chiral separation is possible using the chiral stationary phase immobilized on the sensors, significant differences in the frequency changes are observed because the intensities based on interactions differ among the isomers. The developed method can predict not only the possibility for chiral separation but also the elution order from the chiral stationary phase column. Furthermore, the degree of the mutual separation of a pair of enantiomers seems to be roughly predictable from the difference in the frequency change (DeltaF) and first-order association rate constant (k(obs)). The method does not require several different kinds of chiral columns that are more expensive than achiral ones such as the octadecylsilica (ODS) column. The required amounts of the chiral stationary phases are extremely small, and the sensors with immobilized chiral selectors are reusable. In addition, the method requires only a few minutes to complete the analysis. Thus, considerable reductions in both cost and time are realized. By applying the developed method to many chiral molecules and chiral stationary phases, its superiority may be corroborated; thus, it is expected that the method can be effectively used for the selection of chiral stationary phases.  相似文献   

14.
The theory and use of the "three-phase" model in enantioselective gas-liquid chromatography utilizing a methylated cyclodextrin/polysiloxane stationary phase is presented for the first time. Equations are derived that account for all three partition equilibria in the system, including partitioning between the gas mobile phase and both stationary-phase components and the analyte equilibrium between the polysiloxane and cyclodextrin pseudophase. The separation of the retention contributions from the achiral and chiral parts of the stationary phase can be easily accomplished. Also, it allows the direct examination of the two contributions to enantioselctivity, i.e., that which occurs completely in the liquid stationary phase versus the direct transfer of the chiral analyte in the gas phase to the dissolved chiral selector. Six compounds were studied to verify the model: 1-phenylethanol, alpha-ionone, 3-methyl-1-indanone, o-(chloromethyl)phenyl sulfoxide, o-(bromomethyl)phenyl sulfoxide, and ethyl p-tolylsulfonate. Generally, the cyclodextrin component of the stationary phase contributes to retention more than the bulk liquid polysiloxane. This may be an important requirement for effective GC chiral stationary phases. In addition, the roles of enthalpy and entropy toward enantiorecognition by this stationary phase were examined. While enantiomeric differences in both enthalpy and entropy provide chiral discrimination, the contribution of entropy appears to be more significant in this regard. The three-phase model may be applied to any gas-liquid chromatography stationary phase involving a pseudophase.  相似文献   

15.
The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.  相似文献   

16.
A total of 121 racemic compounds were separated in the normal-phase mode on a (S)-(1-naphthylethyl)carbamoylated beta-cyclodextrin (S-NEC-beta-CD) bonded phase and 74 on the R equivalent (R-NEC) chiral stationary phase (CSP). All compounds are of the type that have four substituents on a stereogenic center, rather than an "axis of chirality". It is shown that the binary solvent pair used as the mobile phase has a significant influence on chiral recognition. However, the proportions of the components of a specific pair have little effect. From the results, the individual contributions to chiral recognition by these CSPs were estimated for 81 different substituents of the stereogenic center. Varying the arrangement of these 81 substituents could produce over 1.6 million compounds. Hydrogen was chosen as the reference substituent and was assigned a 0 cal/mol free energy. The chiral recognition increased when sp2-hybridized carbons were connected to the stereogenic center. Conversely, sp3-hybridized carbons decreased the enantioselectivity. Amido groups increased the chiral recognition, especially when associated with pi-acid (3,5-dinitrobenzoyl) or pi-basic (naphthyl) groups. This approach does not allow one to know which enantiomer elutes first. However, the "substituent energy" list for chiral compounds can be used to obtain an estimated value for the enantioselectivity of a compound by adding the energy contributions of the four substituents connected to the stereogenic center. In this way one can predict a priori whether or not a compound will separate on a CSP and estimate its separation factor (alpha). Theoretically, this approach can be used for most CSPs, provided a sufficient data base is generated on them.  相似文献   

17.
The retention and separation of D,L-dansylvaline enantiomers (used as test solutes) were investigated using silica gel as stationary phase and vancomycin as chiral mobile-phase additive. A retention model was developed to describe the mechanistic aspects of the interaction between solute and vancomycin in the chromatographic system. It considered the formation of vancomycin dimers both "free" in the mobile phase and adsorbed on silica. By fitting the model equation to experimental data, it appeared clearly that the approach taking into account the vancomycin dimerization described accurately the retention behavior of the compounds. The examination of the model equation parameters showed that the glycopeptide dimerization increased the enantioselectivity by a factor of approximately 3.7. This study demonstrated the preponderant role of the vancomycin dimerization on the chiral recognition process of D,L-dansylvaline. Also, an additional analysis on a vancomycin chiral stationary phase indicated that the addition of vancomycin in the mobile phase promoted a greater enantioselectivity mediated by the formation of dimers in the stationary phase.  相似文献   

18.
A simple strategy for preserving and enhancing the chiral recognition capacity of polymer-embedded chiral selectors is proposed, capitalizing on a temporary blockage of the receptor binding site with tightly binding analytes during the polymerization process. We demonstrate that the copolymerization of a quinine tert-butylcarbamate selector monomer with chiral (and achiral) 3,5-dichlorobenzoyl amino acids allows one to control to a certain extent the binding characteristics of the resultant polymeric chiral stationary phases. The structural and stereochemical requirements of the templating analytes for maximizing the chiral recognition capacity of the polymer-embedded selectors are probed. The chromatographic chiral recognition characteristics of the analyte-templated polymeric chiral stationary phases are analyzed with respect to binding capacities and affinities and compared to those obtained with a conventional silica-based surface-grafted reference material. Changes in substrate-specific enantioselectivity originating from analyte templating are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号