首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.  相似文献   

2.
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were per-fectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion proc-esses between Tm3+ and Yb3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and inten-sity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping proc-ess. The potential advantages of Tm3+/Yb3+ co-doped tellurite glass as amplifier material were concluded.  相似文献   

3.
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.  相似文献   

4.
Er^3 -doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt(t=2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er^3 were calculated by Judd-Ofelt theory, and stimulated emission cross-section of ^4I13/2→^4I15/2 transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er^3 -doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er^3 -doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.  相似文献   

5.
We investigated the thermal stability and spectroscopic properties of the 1.53 μm emission from 4I13/2→4I15/2 transition of Er3+ ions in Er3+/Yb3+-codoped Ga-Bi-Pb-Ge heavy metal oxide glass for use in broadband fiber amplifiers. It was noted that the addition of GeO2 ef-fectively enhanced the thermal stability of the heavy metal oxide glass studied. The emission peak located at approximately 1530 nm with a full width at half-maximum of approximately 58 nm. The measured lifetime and the calculated emission cross-section of this transition were ~3.2 ms and-10.3×10-21 cm2, respectively. As a result, Ga-Bi-Pb-Ge heavy metal oxide glasses were assumed to be potential host material for the 1.53 μm broadband optical fiber amplifiers.  相似文献   

6.
The red, green, and blue upconversion properties of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses were studied under 980 nm LD excitation. The intense red (657 nm), green (530 and 545 nm), and blue (476 nm) emissions were simultaneously observed at room temperature. The results showed that the mixed halide modified tellurite glass (TZFCB) had strong upconversion emissions. The effect of halide on upconversion intensity was observed and discussed, and possible upconversion mechanisms were evaluated. The intense red, green, and blue upconversion luminescence of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses might be a potentially useful material for developing three-dimensional displays applications.  相似文献   

7.
The (60 - x)Bi2O3 - xGeO2-30B2O3-10ZnO (x = 5, 10, 20, 30 molar percent) glasses doped with Er^3+ and Er^3+/Yb^3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, O4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er^3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U^(t)(λ = 2, 4, 6) character for optical transitions. The infrared emission of Er^3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er^3+ were enhanced considerably by co-doping Yb^3+ .  相似文献   

8.
The fabrication of one kind of large core area Nd3 doped silicate glass photonic crystal fiber, and demonstration of the fiber's waveguidence properties were reported. This fiber owns a random air hole distribution in the cladding. The measured minimum loss of this kind of fiber is 10 dB·m-1 at 660 nm. These fibers can sustain only a single mode at least over wavelength ranging from 660 nm to 980 nm.  相似文献   

9.
Performance of Photoluminescence Glass Fiber in EU^3+ Doped ZMCB and ZMLB   总被引:1,自引:1,他引:0  
The glass fiber doped rare earth ions is a kind offunctional fiber. A phosphate glass containing Er wasprepared by America Kige Company in 1970, which isan optical fiber with 20 dB·km-1wastage. From thenon, optical fiber communication technique h…  相似文献   

10.
We investigated the thermal stability and spectroscopic properties of the 1.53 μm emission from 4I13/24I15/2 transition of Er3+ ions in Er3+/Yb3+-codoped Ga-Bi-Pb-Ge heavy metal oxide glass for use in broadband fiber amplifiers. It was noted that the addition of GeO2 effectively enhanced the thermal stability of the heavy metal oxide glass studied. The emission peak located at approximately 1530 nm with a full width at half-maximum of approximately 58 nm. The measured lifetime and the calculated emission cross-section of this transition were 3.2 ms and 10.3×10−21 cm2, respectively. As a result, Ga-Bi-Pb-Ge heavy metal oxide glasses were assumed to be potential host material for the 1.53 μm broadband optical fiber amplifiers.  相似文献   

11.
Dy3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 rim, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy3+ ions. The longest lifetime was over 2.5 ms, and the value was signifi-cantly higher than that in other Dy3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.  相似文献   

12.
Er3+-Yb3+ codoped oxy-fluoro-tungstosilicate glasses with infrared-to-visible frequency upconversion luminescence were prepared by melting quenching in air.The effects of Er3+ doping on the optical properties of the samples were measured by means of techniques such as optical absorption spectra and photoluminescence spectra.The results showed that intense green and red signals centered at 546 and 665 nm,corresponding to the 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ by a multiphoton stepwise phonon-assisted excited-state absorption process,respectively,were simultaneously observed by exciting the samples with a diode laser operating at 980 nm at room temperature.The upconversion process was found very sensitive to Er3+ content at a constant Yb2O3 content of 5 mol.%.With the increase of Er3+ content from 0.5% to 1.5%,the upconversion intensity increased gradually.Further increasing of Er3+ content to 3.0% resulted in a significant fluorescence quenching.Moreover,the possible upconversion mechanisms were discussed based on the energy-matching conditions and the quadratic dependence on excitation power.  相似文献   

13.
The forming-regions of phosphate glasses doped with high Sm2O3 contents were studied by two step melting method. The relationship between absorption spectrum and rare earth contents was also discussed. The spectra of BASP glasses were measured by spectrophotometer. The results show that the forming regions will shrink with the increase of Al2O3 and it is difficult to form glass when [PO4]/[AlO4]<2. The forming regions tend to be a closed elliptical, and the intensity of characteristic absorption peak increases gradually with the increase of Sm2O3, the absorption lines broadens non-uniformly and there is approximate linear relation between optical density at the 1064 nm wavelength and Sm2O3 content.  相似文献   

14.
Tellurite glasses were generally applied in rare earth optical materials due to their excellent physical and chemical properties. In this study, novel tellurite glasses composed of TeO2-TiO2-La2O3 were prepared by conventional melting-quenching method. Some basic physical parameters such as density, refractive indices, transition temperature and crystalline temperature were measured. The structure was analyzed by Raman spectra. The absorption, upconversion and fluorescence spectra were measured by UV-Vis-NIR spectrophotometer and spectrofluorimeter. Under 980 nm laser excitation, upconversion luminescence centered at 531, 545 and 657 nm corresponding to the transition 4H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively, were observed. The effects of TiO2 concentration on structure and upconversion luminescence intensity were discussed. The result indicated that the upconversion intensity increased as the phonon concentration decreased. The fluorescence properties of Er3+ doped glass were also studied. The dominant peak centered at 1531 nm and full width at half maximum (FWHM) was 64 nm. The Er3+ stimulated emission cross-section was calculated on the basis of McCumber theory. The possible mechanism of upconvesion and fluorescence were proposed.  相似文献   

15.
A study of energy transfer of Er3+/Nd3+ codoped tellurite glasses was presented. By Nd3+ co-doping, both the Er3+ green emission corresponding to the Er3+: (4S3/2,2H11/2)→4I15/2 transitions and the red emission corresponding to the Er3+: 4F9/2→4I15/2 transitions were quenched. The energy transfer mechanism between Er3+ and Nd3+ was discussed based on their energy level characteristics. The interaction parameters, CD-A, for the energy transfer processes from Er3+ to Nd3+ in tellurites glass were calculated. Finally, the resonant transfer Er3+: 4I9/2→Nd3+: (4F5/2, 2H9/2) was proposed to be the most probable microscopic process to occur in contrast with the other processes.  相似文献   

16.
Nd3+ doped transparent oxyfluoride glass ceramic containing β-YF3 nanocrystals was prepared and the upconversion luminescence behaviors of Nd3+ in the precursor glass and glass ceramic were investigated. Under 796 nm laser excitation, ultraviolet upconversion emissions of Nd3+ ions at 354 nm (4D3/2→4I9/2) and 382 nm (4D3/2→4I11/2) were observed at room temperature. Power dependence analysis demonstrated that three-photon upconversion processes populated the 4D3/2 excited state. In comparison with those of the precursor glass, the ultraviolet emissions were enhanced by a factor of 500 in the glass ceramic, which was attributed to the change in the ligand field of Nd3+ ions and the decrease in phonon energy because of the partition of Nd3+ ions into the β-YF3 nanocrystals after crystallization.  相似文献   

17.
The glass sample based on the composition of 45PbF2-45GeO2-10WO3 co-doped with Yb^3 /Er^3 was prepared by the fusion method in two steps : melted at 950℃ for 20~25min then annealed at 380℃ for 4 h. Through the V-prism it is found that the refractive index of host glass and the sample are 1.517 and 1.65 respectively. The transmittance was observed by using the ultraviolet-visible-infrared spectrometer in the wavelength range from 0.35 to 2.5μm. The transmittance of the host glass is beyond 73%. That of the sample is beyond 50% and there are characteristic absorption peaks of rare-earth ions. The emission spectrum was measured by using the Hitachi F-4500 fluorescent spectrometer pumped by 980nm semiconductor laser. There are a strong emission peak at 530 nm and a weak peak at 650 nm.  相似文献   

18.
With the development of technology and the de-mand of modern optical communication ,the attempt isto produce miniature ,integrated solid lasers ,and in-tegrated active devices .These works promote the evo-lution of the erbium-doped integrated waveguide am-plifier and the microchip laser application[1 ,2]. Toachieve sufficient gain in short active length, rareearth ions doped in waveguide amplifiers and hostglasses must be high enough. However , rare earthions tend toformclusters in silica glas…  相似文献   

19.
yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.  相似文献   

20.
Nd~(3+)/Yb~(3+) co-doped fluorobromide glass samples were prepared by melt quenching.The mid-infrared(MIR) luminescence of the Nd~(3+)/Yb~(3+) co-doped fluorobromide glass was investigated by Br-doping reduces the phonon state density of the matrix.The 3.9 μm MIR luminescence of the samples excited at 793 and 980 nm pump excitation was investigated in detail.There is an effective mutual energy transfer process between Nd~(3+) and Yb~(3+).It is proved under 793 nm excitation that the luminescence of Nd~(3+)at 3.9 μm is reduced by effective energy transfer from,Nd~(3+):~2 H_(11/2)→Yb~(3+):~2 F_(5/2),At the same time,it is proved that the effective energy transfer from Yb~(3+):~2 F_(5/2)→Nd~(3+):2 H_(11/2) under the excitation of 980 nm enhances the luminescence of Nd~(3+) at 3.9 μm.In addition,it is found that the samples still have good infrared(IR) luminescent properties when the temperature changes.The emission cross-sectional area and the absorption cross-sectional area are σ_(em)(3.87 × 10~(-20) cm~2) and σ_(abs)(4.25×10~(-20) cm~2).The fluorescence decay characteristics of the sample at 3.9 μm at the ~2 H_(11/2) level were investigated and the fluorescence lifetime was calculated.The gain performance of the sample was calculated and analyzed,which can reach 4.25 × 10~(-20) cm~2.Those results prove that Nd~(3+)/Yb~(3+)co-doped fluorobromide glass is the potential mid-infrared laser gain material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号