首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
采用扫描电镜(SEM)研究了挤压态镁合金压痕—压平复合变形过程中动态再结晶及孪晶组织演变规律。结果表明:在镁合金压痕—压平复合变形过程中,随着复合变形系数和变形温度的增加,AZ31镁合金的孪晶数量逐渐增多,动态再结晶程度增大,晶粒细化效果明显。动态再结晶的主要形核之处是原始晶粒的晶界处,动态再结晶新晶粒产生于原始晶粒的晶界处,且形状为典型的项链状结构,孪晶界也是动态再结晶的有利形核位置。在压痕-压平复合变形过程中,较低的变形温度和较大的变形程度有利于孪晶组织的形成,且孪晶组织容易出现在大晶粒内部。  相似文献   

2.
对挤压态AZ31镁合金进行了压痕-压平复合变形工艺实验研究,分析了复合变形工艺参数对镁合金动态再结晶组织及孪晶组织的影响规律。研究结果表明,经过复合变形后,AZ31镁合金的微观组织呈现孪晶组织和动态再结晶组织。复合变形系数和变形温度对镁合金微观组织影响明显。随着复合变形系数的增大和变形温度的提高,动态再结晶体积分数随之增大,动态再结晶组织逐渐增多,最后覆盖原始孪晶组织,得到分布均匀且细小的等轴晶,有效改善了镁合金材料的组织性能。  相似文献   

3.
研制了AZ31镁合金板材压痕-压平复合形变模具,并进行了实验研究。结果表明:AZ31镁合金在复合形变过程中,随着压下率的增加,孪晶的数量也随之增加且产生了再结晶晶粒;随着形变温度的升高,晶粒开始长大,孪晶数量随之降低。孪晶及孪生变形主要在低温塑性变形时发生。随着复合形变系数的增加,孪晶数量和动态再结晶程度都开始增加,导致晶粒细化程度增强。在复合形变系数为3/10时,平均晶粒尺寸达到8.1μm,与传统的平辊轧制技术相比,复合形变后AZ31镁合金材料的力学性能得到明显提高,晶粒尺寸细化了19.8%,屈服强度提高了5.9%,抗拉强度提高了15.1%,伸长率提高了16.2%。  相似文献   

4.
分析了压痕-压平复合变形工艺特点及应力与应变状态。研究了压痕-压平复合变形时应变状态对镁合金材料孪晶组织的影响。结果表明,应变状态是镁合金材料产生孪晶的主要因素。拉伸变形区的组织产生了少量的孪晶,晶粒细化不明显;压缩变形区的组织产生了很多细小的压缩孪晶,晶粒细化明显。压痕-压平复合变形产生了压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,从而使镁合金板料的组织性能得到有效改善。压痕-压平复合变形使镁合金板材的形核率的增加速率大于晶粒长大率的增加速率,发生了完全动态再结晶后,晶粒得到进一步细化。  相似文献   

5.
分析了压痕—压平复合形变工艺特点及作用,定义了相关工艺参数,研制了AZ31镁合金板材压痕—压平复合形变模具装置,并进行了实验研究。分析了坯料温度、压下率等工艺参数对镁合金板材微观组织和力学性能的影响规律。结果表明:坯料温度为275℃时,压下率为29%,模具温度为150℃时,经过压痕—压平复合形变后,镁合金板材的微观组织和力学性能得到明显提高,其平均晶粒尺寸为7.84μm,屈服强度为212 MPa,抗拉强度为298 MPa,伸长率为17.2%,显微硬度为91.99 HV。复合形变后的镁合金性能与平棍轧制工艺相比,晶粒尺寸细化了23%,屈服强度提高了5%,抗拉强度提高了15%,伸长率提高了4%,显微硬度提高了12%。  相似文献   

6.
实验研究了经不同道次差温热轧AZ31镁合金的金相组织,结合对轧制过程,尤其是轧件温度场的数值模拟结果,分析了AZ31镁合金差温热轧过程晶粒细化机制与主要影响因素,获得了通过轧制过程动态再结晶,使轧材晶粒尺寸随轧制道次增加,而持续细化的工艺参数,并制备出平均晶粒尺寸为5μm左右的细晶AZ31镁合金板材。  相似文献   

7.
细化晶粒、提高金属综合性能是当前战地车用AZ31镁合金板材塑性成形工艺迫切需要研究的内容。提出了AZ31镁合金板材的减径通道转角(Ironing channel angular extrusion,ICAE)挤压成形工艺。采用数值模拟结合理论分析的方法,对ICAE工艺下200 mm×2 mm的AZ31镁合金板材微观组织演化规律进行了研究。结果表明:ICAE通过晶粒破碎和动态再结晶可以显著细化AZ31镁合金晶粒,板材平均晶粒尺寸可达15μm。  相似文献   

8.
在轧制温度350℃和轧制速度0.5 m/s条件下,分别以20%,30%,40%的压下量对铸轧态AZ31B镁合金板进行了轧制实验,对比了轧制后的微观组织,探究在不同压下量下镁合金板边部和中部区域微观组织变化及其产生原因。结合CA(元胞自动机)数学模型对镁合金的动态再结晶过程进行了数值模拟。结果表明:区域应力场变化所引起的空洞聚集是轧制裂纹扩展的主要原因之一;镁合金板中部和边部晶粒尺寸值平均减小幅度为39.6%和55.5%;CA数值模拟结果预测精度较高,平均相对预测误差在16.03%以内。  相似文献   

9.
为了改善传统大塑性变形技术在实际操作中尺寸参数的局限性,提高AZ31镁合金的晶粒细化效果,提升其综合力学性能,将AZ31镁合金板材分别通过DEFORM-3D有限元数值模拟和300℃条件下4道次锻压-弯曲反复变形工艺实验来研究其变形行为和微观组织。模拟结果表明:变形道次越多,等效应变值越大,1道次变形时,等效应变呈间隔分布,而经过4道次变形后,高应变区域向低应变区域扩散,等效应变分布趋于均匀化;同时,变形过程中存在剪切力,弯曲剪切作用与锻压作用相互耦合,对细化晶粒、开启非基面滑移具有促进作用,有助于改善AZ31镁合金的组织与力学性能。实验结果表明:变形道次越多,晶粒细化效果越好,平均晶粒尺寸可显著细化至7.1μm,同时,组织均匀性不断改善。4道次变形后板材在不同区域处的织构取向分布差异较小,硬度值分布也相对均匀,平均硬度值为62.8 HV。  相似文献   

10.
细晶粒AZ31(Ce)镁合金板材的组织与性能   总被引:7,自引:1,他引:7  
研究了稀土元素Ce对Mg-AL-Zn系AZ31镁合金板材轧制、退火后组织与性能的影响,探讨了细晶粒镁合金的塑性变形机理。结果表明,AZ31(Ce)合金轧制变形及退火后,可以获得尺寸十分细小的晶粒(约10μm),变形能力进一步提高。细晶粒镁合金在变形过程中有多种变形机制共同作用,在大尺寸晶粒中,变形机制以滑移和孪生为主,而在小尺寸晶粒(约10μm)中,晶界滑动机制发挥了重要作用,它可以协调大尺寸晶粒的变形对提高镁合金变形能力起有益的补充,有效地提高镁合金的轧制变形能力。  相似文献   

11.
采用Gleebe-1500D热模拟试验机对AZ31镁合金铸轧板和常规轧制板进行了等温拉仲试验,变形温度为150~400℃,应变速率为3X10-6~3×10-1 s-1.研究了AZ31镁合金铸轧板和常规轧制板在不同变形条件下的组织演变.结果表明,两种板低温变形后的组织主要包括被拉长和破碎的晶粒以及孪晶.随着变形温度的升高,AZ31镁合金开始发生动态再结晶.铸轧板高温低应变速率变形条件下晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板.再结晶晶粒尺寸和参数Z呈幂律关系.  相似文献   

12.
在压下量为10%~40%、轧制速度为0.1~0.8 m/s、初轧温度为250~400℃条件下对AZ31B镁合金进行轧制实验,对轧后镁板的微观组织和力学性能进行综合研究。引入Zener-Hollomon参数,综合考虑初轧温度T、变形速率ε,建立平均晶粒尺寸预测模型;对轧后镁板抗拉强度与平均晶粒尺寸关系进行非线性拟合解析,建立抗拉强度数学模型,基于上述模型建立AZ31B镁合金热轧后组织性能预测模型。结果表明,轧后镁板微观平均晶粒尺寸与宏观抗拉性能存在较强相关性,解析精确度取决于轧前工艺参数的制定,精确求解变形速率ε可有效提高晶粒尺寸及抗拉强度的预测精度;AZ31B镁合金热轧后组织性能预测模型既能指导热轧前设计最优的轧制制度,又能根据轧前工艺参数在线检测进行热轧后镁板组织及性能的综合评估。  相似文献   

13.
采用连续变断面循环挤压技术及新型复合模具对AZ31镁合金进行挤压变形,分析织构演变和循环次数对AZ31镁合金的组织和力学性能的影响。结果表明:AZ31镁合金经过3次循环的变形,上下端平均晶粒尺寸由母材的29.4μm细化到6.1μm,显微硬度提高了18.4 HV,水平方向和轴向的抗拉强度均得到显著提高,轴向的伸长率得提高15.1%,并且宏观织构显示晶粒取向发生了定向转变。  相似文献   

14.
对AZ31镁合金热轧板在350℃进行了累积叠轧焊(ARB)变形,采用EBSD技术研究了AZ31镁合金的微观组织和织构演变.结果表明,ARB可以显著细化AZ31镁合金的晶粒组织,经过3道次变形后平均晶粒尺寸为2.18μm,后续的ARB变形使AZ31镁合金的微观组织更均匀,但晶粒不会再显著细化,说明存在临界ARB变形道次,使晶粒细化和晶粒长大之间达到动态平衡.AZ31镁合金在ARB变形过程中的晶粒细化机制为连续动态再结晶,尤其还观察到了旋转动态再结晶.动态再结晶的形变储存能来源于多道次累积的剧烈应变和沿厚度方向分布复杂的剪切变形.ARB变形过程中旋转动态再结晶和剪切变形使新晶粒c轴发生旋转,导致基面织构弱化.  相似文献   

15.
以AZ31镁合金在热压缩过程中微观组织演变为基础,结合元胞自动机模型(CA),建立了镁合金变形过程中再结晶晶粒尺寸模型和动态再结晶百分数模型。通过对铸态AZ31镁合金在不同变形条件下的热压缩实验,推导出镁合金的位错密度模型、临界位错密度模型、形核率模型和晶粒长大模型。结合元胞自动机具体演变规则,建立元胞自动机模型,并利用应力应变曲线及晶粒大小验证元胞自动机的模拟结果,验证该模型的准确性,结合实验数据和JMAK理论,推导出再结晶晶粒尺寸模型和动态再结晶百分数模型。借助DEFORM-3D分析软件得到镁合金在变形过程中,晶粒尺寸分布的变化情况以及动态再结晶百分数分布的变化情况。  相似文献   

16.
分析了三辊Y型轧机的结构及孔型系统,提出用平三角-圆-弧三角-圆孔型系统连轧机热轧镁合金棒材;利用Deform-3D软件完成AZ31镁合金棒材的轧制过程的数值模拟,确定轧制工艺和模具参数;通过与现场试验的对比分析,验证镁合金棒材热轧的有效性;并在XJP-6A型金相显微镜上对镁合金轧制前后的组织进行比较、分析。结果表明,轧制变形过程中发生了动态再结晶,细化了晶粒尺寸,提高了棒材的力学性能。  相似文献   

17.
采用不同角度模具的反复弯曲-压平变形工艺制备AZ31镁合金板材。通过FEM、OM、EBSD和硬度计研究AZ31镁合金在反复弯曲-压平变形过程中的显微组织演变和变形行为。结果表明,150°/150°模具在所有三组实验中都表现出最佳性能。随着道次的增加,合金的等效应变由于剪切和弯曲作用而显著提高。经过4道次后,合金的平均晶粒尺寸显著细化至1.7μm,基面织构被弱化,这是非基面滑移、动态再结晶和孪生引起的;尤其是锥面滑移有利于引发动态再结晶和孪生。合金的硬度值达到HV 77,这是滑移、孪生和动态再结晶竞争产生的显微组织和织构综合作用的结果。  相似文献   

18.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

19.
镁合金塑性变形机制   总被引:29,自引:0,他引:29  
针对不同晶粒尺寸的镁合金AZ31及添加稀土Ce或Nd的AZ31Ce/AZ31Nd的轧制变形行为,探讨了滑移、孪生和晶界滑动三种变形机制在镁合金塑性变形过程中的作用.结果表明:多种变形机制共同作用可提高镁合金在热变形时的塑性变形能力;合金热变形及再结晶退火后,在平均晶粒尺寸为50 μm以上的大晶粒中,变形机制以滑移和孪生为主,位错运动和增殖会使位错在变形过程中互相缠结、钉扎以及受晶界的阻碍而终止运动;孪生容易发生在不利于滑移的晶粒中促进塑性变形;在5~20μm的小晶粒中,晶界滑动机制发挥了重要作用,它可以协调大尺寸晶粒的变形而对提高镁合金变形能力起有益的补充作用.  相似文献   

20.
为探索镁合金整体壁板压弯成形的可行性,以及镁合金壁板压弯成形过程中金属的流动规律,对AZ31镁合金网格壁板压弯成形进行了数值模拟和实验研究。建立了有限元数值模拟的几何模型,采用有限元计算软件对AZ31镁合金网格壁板压弯成形过程进行了数值模拟研究,分析了镁合金网格壁板压弯成形中的温度场、应变场、应力场、破坏系数等的分布规律。确定了合适的AZ31镁合金壁板压弯成形工艺参数,并对镁合金网格壁板压弯成形进行了实验研究,获得了合格的镁合金网格壁板弯曲件,并分析了镁合金网格壁板成形件尺寸精度,模拟结果与实验结果相吻合,最大相对误差为16.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号