首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the comparison of a three dimensional Computational Fluid Dynamics (CFD) analysis with empirical performance data of a 0.6 m impulse turbine with fixed guide vanes used for wave energy power conversion. Pro-Engineer, Gambit and Fluent 6 were used to create a 3-D model of the turbine. A hybrid meshing scheme was used with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. The turbine has a hub-to-tip ratio of 0.6 and results were obtained over a wide range of flow coefficients. The model yielded a maximum efficiency of approximately 54% as compared to a maximum efficiency of around 49% from experiment. A degree of insight into flow behaviour, not possible with experiment, was obtained.  相似文献   

2.
The objective of this paper is to present the performance comparison of 2D Computational Fluid Dynamics (CFD) analysis with experimental analysis of 0.6 m impulse turbine with fixed guide vanes for both 0.6 and 0.7 hub to tip ratio (H/T). Also the comparison of 2D CFD analysis of the said turbine with different values of H/T ranging from 0.5 to 0.7. A 2D-cascade model was used for CFD analysis while uni-directional steady flow was used for experimental analysis. The blade and guide vane geometries are based on 0.6 m rotor diameter, with optimum profile, and different H/T of 0.5, 0.6 and 0.7. It was concluded from 2D CFD analysis that 0.5 H/T ratio performances was higher than that of 0.6 and 0.7 H/T at peak efficiency and the operational flow range for 0.5 H/T was found to be wider than that of 0.6 and 0.7 H/T ratio.  相似文献   

3.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

4.
透平叶片的气动优化设计系统   总被引:9,自引:0,他引:9  
发展了一个叶轮机械叶片全三维粘性杂交问题的气动优化设计系统。该系统包括分析技术与组合优化技术的耦合:前者基于高精度、鲁棒型的数值分析方法,已成功地用于蒸汽透平叶片的流动分析.并经详细考核已将其纳入到了实际的叶片气动设计体系;后者基于优秀的iSIGHT商用优化平台.通过对多种优化方法的集成从而发展了组合的叶片全三维气动优化策略。数值结果与试验数据的比较表明了这一气动优化设计系统真正纳入到工业设计体系是完全可能的。  相似文献   

5.
超低水头轴流式水轮机CFD优化及流动特性研究   总被引:1,自引:0,他引:1  
结合某水电站改造要求,研发了一种设计水头为2.75 m的超低水头轴流式水轮机并对其性能进行优化,以达到有效利用低水头水力资源的目的。基于不可压缩连续方程及雷诺时均Navier-Stokes方程,采用Spalart-Allmaras湍流模型和SIMPLEC算法对轴流式水轮机进行三维全流场数值模拟,分别分析了轴流式转轮叶片翼型、轮毂比、导叶开度及安放角对水轮机性能的影响,并对最优模型进行实测验证。结果表明,在满足设计水头为2.75 m的情况下,选用配置叶片B、轮毂比为0.30、叶片相对安放角为-2°的水轮机,当导叶相对开度为0°时,装置水力损失最小,最高效率达83.7%,且数值模拟计算所得出力与实测结果误差小于099%,表明基于CFD的数值模拟对超低水头轴流式水轮机的性能预测精度较高。  相似文献   

6.
The aim of this study is to assess the load predicting capability of a classical Beddoes–Leishman dynamic stall model in a horizontal axis wind turbine environment, in the presence of yaw misalignment. The dynamic stall model was tailored to the horizontal axis wind turbine environment and validated against unsteady thick airfoil data. Subsequently, the dynamic stall model was implemented in a blade element‐momentum code for yawed flow, and the results were compared with aerodynamic measurements obtained in the MEXICO (Model Rotor Experiments under Controlled Conditions) project on a wind turbine rotor placed in a large scale wind tunnel. In general, reasonable to good agreement was found between the blade element‐momentum model and MEXICO data. When large yaw misalignments were imposed, poor agreement was found in the downstroke of the movement between the model and the experiment. Still, over a revolution, the maximum normal force coefficient predicted was always within 8% of experimental data at the inboard stations, which is encouraging especially when blade fatigue calculations are being considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The aerodynamics generated by a small small‐scale vertical axis wind turbine are illustrated in detail as a NACA0022 rotor blade carries out a complete rotation at three tip speed ratios. These aerodynamic details are then linked to the wind turbine performance. This is achieved by using detailed experimental measurements of performance and near‐blade particle image velocimetry (PIV) and also by using a two‐dimensional Reynolds‐averaged Navier–Stokes‐based computational fluid dynamics (CFD) model. Uniquely, therefore, the CFD model is validated against both PIV visualizations and performance measurements. At low tip speed ratios ( λ = 2), the flow field is dominated by large‐scale stalling behaviour as shown in both the experimental results and simulations. The onset of stall appears to be different between the experiment and simulation, with the simulation showing a gradual separation progressing forward from the trailing edge, while the experiment shows a more sudden leading‐edge roll‐up. Overall, similar scales of vortices are shed at a similar rate in both the experimental results and simulations. The most significant CFD–PIV differences are observed in predicting flow re‐attachment. At a higher tip speed ratio ( λ = 3), the flow separates slightly later than in the previous condition, and as occurs in the lower tip speed ratio, the main differences between the experiment and the simulation are in the flow re‐attachment process, specifically that the simulations predicts a delay in the process. At a tip speed ratio of 4, smaller predicted flow separation in the latter stages of the upwind part of the rotation is the main difference in comparison to the experiment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
叶片安装位置是影响固定偏角垂直轴潮流能水轮机水动力性能的关键参数之一,为了研究其对水轮机性能影响的基本规律,建立了垂直轴水轮机水槽模型试验系统,设计了垂直轴水轮机性能和载荷测试方法。通过试验结果的分析,得到了叶片安装位置对水轮机能量利用率、推力系数、侧向力系数和合力系数的影响规律,为水轮机设计提供了试验依据。  相似文献   

9.
为了研究转子密实度对导流罩水轮机的影响,建立导流罩水轮机的三维数值模型,利用CFD方法考察多组不同实度叶片下的导流罩水轮机性能参数和流场流速及压力分布.结果显示,额定流速下叶片实度的改变对导流罩式水轮机的水动力性能产生显著影响,实度增加,最大功率系数下降,且导流罩对涵道内流体的增速作用减弱.  相似文献   

10.
文章采用商用计算流体动力学软件ANSYS—CFX数值求解Reynolds—Averaged Navier-Stokes(RANS)方程和标准k-ε紊流模型方法数值研究了考虑阻尼拉金结构的汽轮机长叶片透平级的气动性能.分别计算分析了无阻尼拉金结构、椭圆型阻尼拉金结构和流线型阻尼拉金结构的汽轮机长叶片透平级的流场特性.详细分析了阻尼拉金对长叶片透平级气动性能的影响特性。研究结果表明:阻尼拉金的存在对长叶片流场的影响主要位于叶片吸力面附近。采用椭圆型拉金及流线型拉金长叶片的透平级与无拉金的情况相比,透平级等熵效率分别降低0.313%和0.206%.采用流线型阻尼拉金后透平级等熵效率比椭圆型拉金提高0.107%.相比于椭圆型阻尼拉金结构的长叶片.流线型阻尼拉金结构在其尾缘处的分离涡基本消除.拉金尾缘处的流动损失减少。  相似文献   

11.
To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas turbine working conditions before implementation. Realizing the fact that conducting experiment at gas turbine working condition would be expensive and time consuming, the computational simulation is performed to get a preliminary evaluation on the potential success of mist cooling at gas turbine working conditions. The present investigation aims at validating a CFD model against experimental results in a 180-degree tube bend and applying the model to predict the mist/steam cooling performance at gas turbine working conditions. The results show that the CFD model can predict the wall temperature within 8% of experimental steam-only flow and 16% of mist/steam flow condition. Five turbulence models have been employed and their results are compared. Inclusion of radiation into CFD model causes noticeable increase in accuracy of prediction. The reflect Discrete Phase Model (DPM) wall boundary condition predicts better than the wall-film boundary condition. The CFD simulation identifies that mist impingement over outer wall is the cause for maximum mist cooling enhancement at 45° of bend portion. The computed results also reveal the phenomenon of mist secondary flow interaction at bend portion, adding the mist cooling enhancement at the inner wall. The validated CFD simulation predicts that average of 100% mist cooling enhancement can be achieved by injecting 5% mist at elevated GT working condition.  相似文献   

12.
This paper deals with the detailed flow analysis of impulse turbine with experimental and computed results for wave energy power conversion. Initially, several turbulence models have been used in two-dimensional (2-D) computational fluid dynamic (CFD) analysis to find a suitable model for this kind of slow speed unconventional turbine. Experiments have been conducted to validate the CFD results and also to analyze the aerodynamics at various stations of the turbine. The three-dimensional (3-D) CFD model with tip clearance has been generated to predict the internal flow and to understand the effect of tip clearance leakage flow on behavior of the turbine in design and off-design conditions. As a result, it is found from the 2-D results that the comparison between computed and experimental data is good, qualitatively and the turbulence model, standard kε can predict the experimental values reasonably well, especially the efficiency of the turbine. Experimental results reveal that the downstream guide vanes are more responsible for low efficiency of the turbine and it is measured that 21% average pressure is lost due to downstream guide vanes. It is proved from the 3-D CFD model with tip clearance that it can predict the experimental values quantitatively and qualitatively. Furthermore, it is estimated from the computed results that the efficiency of the turbine has been reduced about 4%, due to tip clearance leakage flow at higher flow coefficients.  相似文献   

13.
This paper presents a CFD model for the evaluation of energy performance and aerodynamic forces acting on a straight-bladed vertical-axis Darrieus wind turbine. The basic principles which are currently applied to BE-M theory for rotor performance prediction are transferred to the CFD code, allowing the correlation between flow geometric characteristics (such as blade angles of attack) and dynamic quantities (such as rotor torque and blade tangential and normal forces). The model is proposed as a powerful design and optimization tool for the development of new rotor architectures for which test data is not available.After describing and validating the computational model against experimental data, a full campaign of simulation is proposed for a classical NACA 0021 three-bladed rotor.Flow field characteristics are investigated for several values of tip speed ratio, allowing a comparison among rotor operation at optimum and lower Cp values, so that a better understanding of vertical-axis wind turbines basic physics is obtained.  相似文献   

14.
As a result of adopting saturation steam and long blade, problems of water erosion of last stage blade for steam turbine become more prominent. In order to improve the operation reliability and efficiency of steam turbine, it is necessary to investigate the nonequilibrium condensing wet steam two phase flow and the dehumidity method. A wet steam model with user defined function based on FLUENT software was investigated to simulate the steam condensing flow in the cascades. The simulation consequences show that the pressure variations in simulation depict a good agreement with the experiment data. On the basis of the discrete phase model simulation results and experiment data, the efficiency of existing dehumidity blade with suction slot was calculated. A new stationary dehumidity blade was designed to elevate the dehumidity efficiency: the efficiency in the suction surface was increased by 21.5%, and that in the pressure surface was increased by 12.2%.  相似文献   

15.
The flow characteristics and the stall delay phenomenon of wind turbine rotor due to blade rotation in the steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier–Stokes solver is applied to carry out all the cases at different wind speeds from 5 m/s to 10 m/s with an interval of 1 m/s. CFD results turn out to agree well with experimental ones at incoming wind speeds below 10 m/s, though at 10 m/s some deviations exist due to the relative large flow separation and 3D spanwise flow over the suction surface of the blade. In the meanwhile, a lifting surface code with and without Du–Selig stall delay model is used to predict the power. A MATLAB code is developed to extract aerodynamic force coefficients from 3D CFD computations which are compared with the 2D airfoil wind tunnel experiment to demonstrate the stall delay and augmented lift phenomenon particularly at inboard span locations of the blade. The computational results are compared with the corrected value by the Du–Selig model and a lifting surface method derived data based on the measurements of the Unsteady Aerodynamic Experiment at the NASA Ames wind tunnel.  相似文献   

16.
Bo Yang  Chris Lawn 《Renewable Energy》2011,36(12):3355-3366
This paper is concerned with the study of a novel design of turbine for tidal currents or fast-flowing streams, called the ‘Hunter Turbine’. The turbine consists of several flapping blades that are hinged on a revolving drum. Flow visualization experiments on a small model were conducted to provide some basic rules from which the movement of every flapping blade at every drum position could be determined. Two-dimensional quasi-steady CFD was then used to obtain detailed information about the flow field, including pressure and velocity contours, and the pressure distribution on the surface of the blades. It was found that the Hunter Turbine gives very satisfactory performance over a restricted range of flow coefficient. Under these conditions, the kinetic energy of the incident flow can be effectively transferred into the movement of the rotor, so that the average power coefficient (based on the projected area with an open blade) reaches a value of 0.19. Using the CFD results, a polynomial function is fitted to the dependence of an effective force coefficient for all blades on the rotational angle and the flow coefficient. The net forces acting on the surfaces of the blades can thus be interpolated between the calculated data points.  相似文献   

17.
Hydraulic turbine is used for recovering power by using reverse running pump. In order to improve the efficiency of turbine working condition, the impeller with forward-curved blades was applied instead of the impeller with backward-curved blades. The effects on the performance of hydraulic turbine and inner flow character with different blade wrap angles were studied by the method of numerical simulation. The results show that: with the blade wrap angle growth, the maximum efficiency increases, but the range of the flow rate at the high efficiency decreases rapidly; the flow state of hydraulic turbine which in small flow area obtains a remarkable improvement; the flow within the impeller improves and the friction loss increases; the hydraulic loss in the small flow area inside the impeller declines but it grows in the large flow area.  相似文献   

18.
19.
为研究静叶弯、扭、掠联合造型对流场结构的影响,以某高压透平首级叶片为研究对象,借助计算流体力学与正交优化方法,基于动静叶最佳匹配原则(即对于每种静叶构型,动叶都进行了相应的扭转规律变化,使得动静叶气动性能处于最佳匹配状态),研究了静叶不同复合构型方式对流场结构的影响。结果表明:在合理的静叶弯曲规律下,静叶扭转改型对透平性能有较大影响,掠改型对透平性能影响有限;在一定的扭转规律下,对静叶进行掠改型对轮周效率的影响较小,仅后掠改型会提高透平的轮周效率;对弯扭掠静叶匹配扭动叶进行联合优化,得到的最佳透平的轮周效率为87.12%,与原始透平相比,轮周效率提高了2.09%。  相似文献   

20.
风力机叶片三维数值计算方法确认研究   总被引:2,自引:0,他引:2  
采用CFD软件包FINETM/TURBO,以两叶片NREL PhaseⅥ风力机的风轮为对象,进行了风力机风轮叶片三维绕流的定常粘性数值模拟研究。通过详细对比计算结果与实验数据(包括功率、叶片展向5个截面压力系数分布及沿叶展方向载荷系数分布),确认在大部分风速条件下数值模拟可以很好的预计风力机气动性能。然后分析了计算域尺度、边界条件和湍流模型等对数值模拟结果的影响,为采用CFD技术对实际风力机叶片三维气动性能进行精确数值模拟提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号