首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH.  相似文献   

2.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

3.
PERFORMANCE OF A HEAT PUMP USING DIRECT EXPANSION SOLAR COLLECTORS   总被引:1,自引:0,他引:1  
Theoretical and experimental studies were made on the thermal performance of a heat pump that used a bare flat-plate collector as the evaporator. The analysis used empirical equations to express the electric power consumption of the compressor and coefficient of performance (COP), as functions of temperature of evaporation at the evaporator and that of the heat transfer medium (water) at the inlet of the condenser. The experimental heat pump had a compressor with a rated capacity of 350 W and collectors with the total area of 3.24 m2. Around noon in winter the evaporator temperature was found to be about 17°C higher than the ambient air temperature of 8°C, and a COP of about 5.3 was obtained when the water temperature at the condenser inlet was 40°C. These measured evaporation temperatures and COPs were in good agreement with those predicted by the analysis. According to the analysis, the total area of the collectors in the experiment was appropriate for the heat pump system. Also, the 1-mm thickness of the collector's copper plate used in the experiment could be 0.5 mm with little reduction of COP. The pitch of the tube soldered to the copper plate for the refrigerant flow was 100 mm in the experiment, but the COP would only be reduced by about 4% if the pitch were changed to 190 mm.  相似文献   

4.
Thermal performance of a direct expansion solar-assisted heat pump   总被引:2,自引:0,他引:2  
A direct expansion solar assisted heat pump, in which a bare flat plate collector also acts as the evaporator for the refrigerant, Freon-12, is designed and operated. The system components, e.g. the collector and the compressor, are properly matched so as to result in system operating conditions wherein the collector/evaporator temperature ranges from 0 to 10°C above ambient temperature under favorable solar conditions. This operating temperature range is particularly favorable to improved heat pump and solar collector performance. The system thermal performance is determined by measuring refrigerant flow rate, temperature and pressure at various points in the system. The heat pump COPH and the solar collector efficiency ranged from 2.0 to 3.0 and from 40 to 70 per cent, respectively, for widely ranging ambient and operating conditions. Experimental results indicate that the proposed system offers significant advantage in terms of superior thermal performance when compared with results gotten by replacing the solar evaporator with a standard outdoor fan-coil unit.  相似文献   

5.
《Applied Thermal Engineering》2001,21(10):1049-1065
Analytical and experimental studies were performed on a solar assisted heat pump water heating system, where unglazed, flat plate solar collectors acted as an evaporator for the refrigerant R-134a. The system was designed and fabricated locally, and operated under meteorological conditions of Singapore. The results obtained from simulation are used for the optimum design of the system and enable determination of compressor work, solar fraction and auxiliary energy required for a particular application. To ensure proper matching between the collector/evaporator load and compressor capacity, a variable speed compressor was used. Due to high ambient temperature in Singapore, evaporator can be operated at a higher temperature, without exceeding the desired design pressure limit of the compressor, resulting in an improved thermal performance of the system. Results show that, when water temperature in the condenser tank increases with time, the condensing temperature, also, increases, and the corresponding COP and collector efficiency values decline. Average values of COP ranged from about 4 to 9 and solar collector efficiency was found to vary between 40% and 75% for water temperatures in the condenser tank varying between 30°C and 50°C. A simulation model has been developed to analyse the thermal performance of the system. A series of numerical experiments have been performed to identify important variables. These results are compared with experimental values and a good agreement between predicted and experimental results has been found. Results indicate that the performance of the system is influenced significantly by collector area, speed of the compressor, and solar irradiation. An economic analysis indicates a minimum payback period of about two years for the system.  相似文献   

6.
A solar ejector cooling system using refrigerant R134a in the Athens area   总被引:2,自引:0,他引:2  
This paper describes the performance of an ejector cooling system driven by solar energy and R134a as working fluid. The system operating in conjunction with intermediate temperature solar collector in Athens, is predicted along the 5 months (May–September). The operation of the system and the related thermodynamics are simulated by suitable computer codes and the required local climatologically data are determined by statistical processing over a considerable number of years. It was fount that the COP of ejector cooling system varied from 0.035 to 0.199 when the operation conditions were: generator temperature (82–92 °C), condenser temperature (32–40 °C) and evaporator temperature (−10–0 °C). For solar cooling application the COP of overall system varied from 0.014 to 0.101 with the same operation conditions and total solar radiation (536–838 W/m2) in July.  相似文献   

7.
For countries with a high potential of solar energy, producing cold using solar energy is a promising way to sustainable development since the energy used is free and not harmful for the environment.This work proposes a solar adsorption refrigerator using the pair activated carbon–methanol, which has been totally built and is under experimental tests in the solar laboratory of the Faculty of Sciences of Rabat, the capital of Morocco with Mediterranean climate.The solar adsorption refrigerator is mainly composed of a collector containing the adsorbent, an evaporator and a condenser. The results show that the refrigerator gives good performance in Rabat. The unit produces cold even in rainy and cloudy days and the temperatures achieved by the unit can be less than −11 °C for days with a very high irradiation. The solar coefficient of performance (COP) (cooling energy/solar energy) ranges between 5% and 8% for an irradiation between 12,000 and 28,000 kJ m−2 and a daily mean ambient temperature around 20 °C.  相似文献   

8.
为研究微通道集热/蒸发器内制冷剂分布及对直膨式太阳能热泵系统性能的影响,搭建以丙烷(R290)为制冷剂的系统实验平台。基于实验数据,提出一种利用红外成像技术分析微通道集热/蒸发器内两相态制冷剂分布的方法,获得了电子膨胀阀开度、太阳辐射强度以及环境温度对集热/蒸发器内两相态制冷剂分布情况的影响特性。结果表明:当电子膨胀阀开度由20%增至60%时,集热/蒸发器的制冷剂分布参数(RDP)提高10.6%,系统性能系数(COP)从2.8升至5.5。较高的太阳辐射强度或环境温度可有效避免制冷剂回流现象。  相似文献   

9.
Exergy analysis is used as a tool to analyse the performance of an ejector refrigeration cycle driven by solar energy. The analysis is based on the following conditions: a solar radiation of 700 W/m2, an evaporator temperature of 10 °C, a cooling capacity of 5 kW, butane as the refrigerant in the refrigeration cycle and ambient temperature of 30 °C as the reference temperature. Irreversibilities occur among components and depend on the operating temperatures. The most significant losses in the system are in the solar collector and the ejector. The latter decreases inversely proportional to the evaporation temperature and dominates the total losses within the system. The optimum generating temperature for a specific evaporation temperature is obtained when the total losses in the system are minimized. For the above operating conditions, the optimum generating temperature is about 80 °C.  相似文献   

10.
Y.H. Kuang  R.Z. Wang   《Solar Energy》2006,80(7):795-803
This paper reports on the long-term performance of a direct-expansion solar assisted heat pump (DX-SAHP) system for domestic use, which can offer space heating in winter, air conditioning in summer and hot water during the whole year. The system employs a bare flat-plate collector array with a surface area of 10.5 m2, a variable speed compressor, a storage tank with a total volume of 1 m3 and radiant floor heating unit. The performance under different operation modes is presented and analyzed in detail. For space-heating-only mode, the daily-averaged heat pump COP varied from 2.6 to 3.3, while the system COP ranged from 2.1 to 2.7. For water-heating-only mode, the DX-SAHP system could supply 200 l or 1000 l hot water daily, with the final temperature of about 50 °C, under various weather conditions in Shanghai, China. For space-cooling-only mode, the compressor operates only at night to take advantage of a utility’s off-peak electrical rates by chilling water in the thermal storage tank for the daytime air-conditioning. It shows that, the multi-functional DX-SAHP system could guarantee a long-term operation under very different weather conditions and relatively low running cost for a whole year.  相似文献   

11.
The development of a demonstration package supplying residential cooling and/or electricity via a solar-heated Rankine Cycle is discussed. The 3-ton air conditioning, 1-kW electric system employs a solar collector to warm flowing water which provides input heat to a low temperature organic (R-113) Rankine Cycle. Expansion through a high speed (50,000 rpm) turbine-speed reducer drives an available R-12 refrigeration compressor and 3600 rpm motor-generator.The design point solar collector water temperature is 215°F, providing an R-113 temperature at the turbine inlet of 200°F. With a water-cooled R-113 condenser purveying a condensing temperature of 95°F and a turbine efficiency design goal of 80%, Rankine Cycle efficiency (turbine shaft power divided by heat input to the working fluid) is 11·5%.An 85% efficient R-12 compressor yields an overall coefficient of performance (COP) goal of 0·71.The project is jointly funded by Honeywell, Inc., and the National Science Foundation.  相似文献   

12.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents simulation studies conducted on a GAXAC cycle of capacity 3.514 kW using ammonia–water as working fluid for cooling applications. The low side pressure ratio of (compressor pressure ratio) of the cycle has been optimized for optimum COP. The effects of temperatures of the generator, condenser, absorber and evaporator on the COP of the cycle as a function of low side pressure ratio have been studied. The effect of the low side pressure ratio on the heat duties (kW) of the cycle has also been studied. It is found that for a given value of desorber and approach temperatures, the optimum COP corresponding to the optimum pressure ratio is independent of the temperatures of condenser, absorber and evaporator. The optimum COP for the desorber temperatures 110 °C, 130 °C, 150 °C and approach temperature 14 °C at all optimum pressure ratios are found to be 1.00, 0.97 and 0.94, respectively. Comparison of GAXAC and standard GAX cycle was carried out and found that GAXAC cycle has 26% higher value of COP than the standard GAX cycle.  相似文献   

14.
The paper describes a series solar heat pump, using Freon 11 as the working fluid. The heat pump is specifically designed for use in a tropical climate where the normal daytime ambient of above 25°C permits the evaporator to be operated at a high temperature (15–50°C depending on solar input). The use of Freon 11 permits conventional reciprocating refrigeration compressors to be used at elevated temperatures without exceeding design pressure limits. A single unit acts as the evaporator and solar collector. When solar insolation is low the evaporator pressure automatically drops so that energy is received from the atomsphere. However the C.O.P. and output are so low in this mode that the system cannot correctly be termed dual source. The water cooled condenser operates in the temperature range of 35–90°C, the heated water representing the useful output of the system. Operation in the air conditioning mode is not possible due to the large specific volume of Freon 11 at low temperatures. A theoretical analysis is presented to describe the system operation, and the experimental results are shown to agree well with the computer simulation. Average values of C.O.P. of between 2.5 and 3.5 were obtained for the small prototype developed with high side storage temperatures of up to 80°C.  相似文献   

15.
In this study, a mathematical model of absorption heat transformer (AHT) operating with the aqua/ammonia was developed to simulate the performance of these systems coupled to a solar pond in order to increase the temperature of the useful heat produced by solar ponds and used a special ejector located at the absorber inlet. By the use of the ejector, the obtained absorber pressure becomes higher than the evaporator pressure and thus the system works with triple-pressure-level. The ejector has two functions: (i) aids pressure recovery from the evaporator and (ii) upgrades the mixing process and the pre-absorption by the weak solution of the ammonia coming from the evaporator. The other advantage of the system with ejector is increased absorber temperature. Therefore, pressure recovery and pre-absorption in the ejector improves the efficiency of the AHT. Under the same circumstances, when compared to an AHT with and without an ejector, the system's COP and exergetic coefficient of performance (ECOP) were improved by 14% and 30%, respectively and the circulation ratio (f) was reduced by 57% at the maximum efficiency condition. Due to the reduced circulation ratio, the system dimensions can be reduced; consequently, this decreases overall cost. The maximum upgrading of the solar pond's temperature by the AHT was obtained at 57.5 °C and gross temperature lift at 97.5 °C with coefficients of performance of about 0.5. The maximum temperature of the useful heat produced by the AHT was 150 °C. In addition, exergy losses for each component in the system were calculated at different working temperatures and the results of both systems with and without an ejector were compared. Exergy analysis emphasised that both the losses and irreversibilities have an impact on the system performance and exergy analysis can be used to identify the less efficient components of the system. Exergy analyses also showed that the exergy loss of the absorber of AHT with ejector was higher than those of other components.  相似文献   

16.
A simulation study of hybrid solar-geothermal heat pump system for residential applications using carbon dioxide was carried out under different operating conditions. The system consists of a solar unit (concentric evacuated tube solar collector and heat storage tank) and a CO2 heat pump unit (three double-pipe heat exchangers, electric expansion valve, and compressor). As a result, the differential of pressure ratio between the inlet and the outlet of the compressor increases by 19.9%, and the compressor work increases from 4.5 to 5.3 kW when the operating temperature of the heat pump rises from 40 °C to 48 °C. Besides, the pressure ratio of the compressor decreases from 3 to 2.5 when the ground temperature increases from 11 °C to 19 °C. The operating time of the heat pump is reduced by 5 h as the daily solar radiation increases. As the solar radiation increases from 1 to 20 MJ/m2, the collector heat rises by 48% and the maximum collector heat becomes 47.8 kWh. The heating load increases by 70% as the indoor design temperature increases from 18 °C to 26 °C. However, the solar fraction is reduced from 11.4% to 5.8% because of the increases of the heating load.  相似文献   

17.
A simulation model for the CO2 heat pump water heater was developed and validated in this study. Component models of the gas cooler, evaporator, compressor, and expansion valve were constructed with careful consideration for the heat transfer performances. To validate the simulation model, experiments were carried out using an actual CO2 heat pump water heater (water heating capacity: 22.3 kW; hot-water temperature: 90 °C). In simulations and experiments, the effects of the inlet water temperature and outside air temperature on the system characteristics were discussed. As a result, the average difference in COP between the simulation results and experimental results is 1.5%.  相似文献   

18.
A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H2O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m2 vacuum tube solar collector, a 4.5 kW LiBr/H2O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m2 Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m2 (between 11 and 13.30 h) and ambient temperature of 24 °C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 °C, demonstrating its potential use in cooling domestic scale buildings.  相似文献   

19.
The characteristic of an integral type solar-assisted heat pump water heater (ISAHP) is investigated in the present study. The ISAHP consists of a Rankine refrigeration cycle and a thermosyphon loop that are integrated together to form a package heater. Both solar and ambient air energies are absorbed at the collector/evaporator and pumped to the storage tank via a Rankine refrigeration cycle and a thermosyphon heat exchanger. The condenser releases condensing heat of the refrigerant to the water side of the thermosyphon heat exchanger for producing a natural-circulation flow in the thermosyphon loop. A 105-liter ISAHP using a bare collector and a small R134a reciprocating-type compressor with rated input power 250 W was built and tested in the present study. The ISAHP was designed to operate at an evaporating temperature lower than the ambient temperature and a matched condition (near saturated vapor compression cycle and compressor exhaust temperature <100°C). A performance model is derived and found to be able to fit the experimental data very well for the ISAHP. The COP for the ISAHP built in the present study lies in the range 2.5–3.7 at water temperature between 61 and 25°C.  相似文献   

20.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号