首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义.提出了一种基于深度卷积神经网络的心音分类方法.将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经网络模型的输入;利用深度卷积神经网络对MFSC特征图进行训练,...  相似文献   

2.
3.
4.
正常与异常心音分类在心血管疾病的筛查中有着重要的作用.建立在无心音分割的基础上,提出了一种基于功率谱密度时频分布特征与卷积神经网络的心音分类方法.该方法采用小波降噪做预处理,通过循环自相关获取心动周期,采用双线性插值法提取维度一致的心动周期功率谱密度时频特征,并送入卷积神经网络进行训练与测试.实验采用Challenge...  相似文献   

5.
针对目前利用卷积神经网络进行花朵图像分类时,全连接层产生的参数冗余和破坏空间结构信息问题,提出一种有效的改进方法。首先用1×n和n×1卷积核替换n×n卷积核,然后在卷积层后连接空间金字塔池化进行降维提取特征,最后在Softmax分类器输出概率分布。实验表明本文的方法不仅提高了准确率,而且使训练时间下降了一半,大大提高了训练的速度。  相似文献   

6.
基于跨连卷积神经网络的性别分类模型   总被引:1,自引:0,他引:1  
为提高性别分类准确率, 在传统卷积神经网络(Convolutional neural network, CNN)的基础上, 提出一个跨连卷积神经网络(Cross-connected CNN, CCNN)模型. 该模型是一个9层的网络结构, 包含输入层、6个由卷积层和池化层交错构成的隐含层、全连接层和输出层, 其中允许第2个池化层跨过两个层直接与全连接层相连接. 在10个人脸数据集上的性别分类实验结果表明, 跨连卷积网络的准确率均不低于传统卷积网络.  相似文献   

7.
为解决水面漂浮物的分类回收问题,在深度学习框架下,基于深度卷积神经网络(DCNN)提出了用于水面漂浮物的分类识别模型.使用电荷耦合器件(CCD)相机采集各类漂浮物的图像,通过平移旋转、随机裁剪、仿射变换和添加噪声的操作进行了扩充并建立了训练和测试数据集.通过对低层特征自动分层地学习提取抽象的高层特征,基于提取的高层特征...  相似文献   

8.
为了应对大量图像的分类问题,提出一种基于深度卷积神经网络和CUDA-cuDNN并行运算的快速图像分类方法。该方法利用深度卷积神经网络自动学习特征的优势来解决手工设计特征普适性差等问题,同时结合基于CUDA架构的cuDNN并行运算策略来提高训练速度和加快分类速度,并且针对深度卷积神经网络易受参数扰动等缺点,引入批量正则化(Batch Normalization)以提高算法的鲁棒性。实验结果表明,该方法不仅大幅缩短了训练时间同时加快了图像的分类速度,而且进一步降低了图像分类的错误率。  相似文献   

9.
心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位。首先将原始信号通过滑动窗口进行分帧,然后通过短时傅里叶变换得到其频谱,再通过梅尔滤波器得到其梅尔频谱系数(Mel frequency spectral coefficient, MFSC)特征,输入第1个定位网络对其是否为心音段进行判断,如果是的话,再输入判别神经网络,识别第一心音与第二心音,从而实现心音的分割。最后利用多帧结果投票,减小误判。同时,在卷积神经网络中引入空间注意力机制,实验结果表明,这种加入了注意力机制的两级神经网络模型在心音分割任务上比使用单个卷积神经网络分类模型的准确率更高,也使得模型更加简单,轻量化。  相似文献   

10.
针对传统图像分类方法分类精度不高的问题,文章采用了两层卷积和池化的卷积神经网络(Convolutional Neural Network, CNN)算法来对图像进行分类。从不同方面将CNN与支持向量机(Support Vector Machines, SVM)、反向传播算法(Back Propagation, BP)进行图像分类的准确率对比,实验结果表明,CNN算法图像分类的准确率高于其它两种算法。  相似文献   

11.
邓忠豪  陈晓东 《计算机应用》2019,39(7):2109-2115
在传统的肺结节检测算法中,存在检测敏感度低,假阳性数量大的问题。针对这一问题,提出了基于深度卷积神经网络(CNN)的肺结节检测算法。首先,有目的性地简化传统的全卷积分割网络;然后,创新地加入对部分CNN层的深监督并使用改进的加权损失函数,获得高质量的候选肺结节,保证高敏感度;其次,设计了基于多尺度上下文信息的三维深度CNN来增强对图像的特征提取;最后,将训练得到的融合分类模型用于候选结节分类,以达到降低假阳率的目的。所提算法使用了LUNA16数据集,并通过对比实验验证算法的性能。在检测阶段,当每个CT检测出的候选结节数为50.2时,获得的敏感度为94.3%,与传统的全卷积分割网络相比提升了4.2个百分点;在分类阶段,竞争性能指标达到0.874。实验结果表明,所提算法能够有效提高检测敏感度和降低假阳率。  相似文献   

12.
杨磊  赵红东 《计算机应用》2005,40(11):3172-3177
针对传统卷积神经网络(CNN)模型存在大量冗余参数的问题,提出了两个基于SqueezeNet核心结构Fire模块的轻量级网络模型Fnet1和Fnet2。之后结合移动端分布式数据采集和处理的特点,在Fnet2模型基础上,依据Dempster-Shafer(D-S)证据理论将Fnet2与深度神经网络(DNN)融合,提出新的网络模型FnetDNN。首先,建立一个具有四层卷积层的神经网络Cent作为基准,以梅尔倒谱系数(MFCC)作为特征输入来对比分析Fnet1、Fnet2和Cent的网络结构特点、计算量、卷积核参数数量及识别准确率,结论是Fnet1仅使用Cnet参数数量的10.3%就可达到86.7%的分类准确率;然后,将MFCC与全局特征向量输入到FnetDNN模型中,使得该模型的识别准确率提高到了94.4%。实验结果表明,Fnet网络模型不仅可以压缩冗余参数,还可以与其他网络相融合,具备模型扩展能力。  相似文献   

13.
杨磊  赵红东 《计算机应用》2020,40(11):3172-3177
针对传统卷积神经网络(CNN)模型存在大量冗余参数的问题,提出了两个基于SqueezeNet核心结构Fire模块的轻量级网络模型Fnet1和Fnet2。之后结合移动端分布式数据采集和处理的特点,在Fnet2模型基础上,依据Dempster-Shafer(D-S)证据理论将Fnet2与深度神经网络(DNN)融合,提出新的网络模型FnetDNN。首先,建立一个具有四层卷积层的神经网络Cent作为基准,以梅尔倒谱系数(MFCC)作为特征输入来对比分析Fnet1、Fnet2和Cent的网络结构特点、计算量、卷积核参数数量及识别准确率,结论是Fnet1仅使用Cnet参数数量的10.3%就可达到86.7%的分类准确率;然后,将MFCC与全局特征向量输入到FnetDNN模型中,使得该模型的识别准确率提高到了94.4%。实验结果表明,Fnet网络模型不仅可以压缩冗余参数,还可以与其他网络相融合,具备模型扩展能力。  相似文献   

14.
何雪英  韩忠义  魏本征 《计算机应用》2018,38(11):3236-3240
针对当前皮肤病识别分类面临的两个主要问题:一是由于皮肤病种类繁多,病灶外观的类间相似度高和类内差异化大,尤其是色素性皮肤病,使得皮肤病的识别分类比较困难;二是皮肤病识别算法模型设计存在一定的局限性,识别率还有待进一步提高。为此,以VGG19模型为基础架构,训练了一个结构化的深度卷积神经网络(CNN),实现了色素性皮肤病的自动分类。首先,采用数据增强(裁剪、翻转、镜像)对数据进行预处理;其次,将在ImageNet上预训练好的模型,迁移至增强后的数据集进行调优训练,训练过程中通过设置Softmax损失函数的权重,增加少数类判别错误的损失,来缓解数据集中存在的类别不平衡问题,提高模型的识别率。实验采用深度学习框架PyTorch,在数据集ISIC2017上进行。实验结果表明,该方法的识别率和敏感性可分别达到71.34%、70.01%,相比未设置损失函数的权重时分别提高了2.84、11.68个百分点,说明该方法是一种有效的皮肤病识别分类方法。  相似文献   

15.
陈郑淏  冯翱  何嘉 《计算机应用》2019,39(7):1936-1941
针对情感分类中传统二维卷积模型对特征语义信息的损耗以及时序特征表达能力匮乏的问题,提出了一种基于一维卷积神经网络(CNN)和循环神经网络(RNN)的混合模型。首先,使用一维卷积替换二维卷积以保留更丰富的局部语义特征;再由池化层降维后进入循环神经网络层,整合特征之间的时序关系;最后,经过softmax层实现情感分类。在多个标准英文数据集上的实验结果表明,所提模型在SST和MR数据集上的分类准确率与传统统计方法和端到端深度学习方法相比有1至3个百分点的提升,而对网络各组成部分的分析验证了一维卷积和循环神经网络的引入有助于提升分类准确率。  相似文献   

16.
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。  相似文献   

17.
俞汝劼  杨贞  熊惠霖 《计算机应用》2017,37(6):1702-1707
针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立的bounding-box的回归问题,用一个24层卷积神经网络模型来完成bounding-box的预测;然后,利用图像分类网络来完成目标切片的分类任务。大尺寸图像上的传统目标检测识别算法通常在时间效率上很难突破,而基于卷积神经网络的航空器目标检测识别算法充分利用了计算硬件的优势,大大缩短了任务耗时。在符合应用场景的自采数据集上进行测试,所提算法目标检测实时性达到平均每张5.765 s,在召回率65.1%的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。  相似文献   

18.
夏旻  宋稳柱  施必成  刘佳 《计算机应用》2018,38(8):2141-2147
针对深度强化学习中卷积神经网络(CNN)层数过深导致的梯度消失问题,提出一种将密集连接卷积网络应用于强化学习的方法。首先,利用密集连接卷积网络中的跨层连接结构进行图像特征的有效提取;然后,在密集连接卷积网络中加入权重系数,加权密集连接卷积网络中的每一层都接收到前面几层产生的所有特征图,且之前所有层在跨层连接中被赋予不同的初始权重;最后,在训练中动态调整每层的权重,从而更加有效地提取特征。与常规深度强化学习方法相比,在GridWorld仿真实验中,在相同训练步数内的平均奖励值提升了85.67%;在FlappyBird仿真中,平均奖励值提升了55.05%。实验结果表明所提方法能在不同难度的游戏仿真实验中获得更好的性能。  相似文献   

19.
针对翻录语音攻击说话人识别系统,危害合法用户的权益问题,提出了一种基于卷积神经网络(CNN)的翻录语音检测算法。首先,通过提取原始语音与翻录语音的语谱图,并将其输入到卷积神经网络中,对其进行特征提取及分类;然后,搭建了适应于检测翻录语音的网络框架,分析讨论了输入不同窗移的语谱图对检测率的影响;最后,对不同偷录及回放设备的翻录语音进行了交叉实验检测,并与现有的经典算法进行了对比。实验结果表明,所提方法能够准确地判断待测语音是否为翻录语音,其识别率达到了99.26%,与静音段梅尔频率倒谱系数(MFCC)算法、信道模式噪声算法和长时窗比例因子算法相比,识别率分别提高了约26个百分点、21个百分点和0.35个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号