首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

2.
In order to explore the possibility of using cross-linked poly(4-vinyl pyridine), PVP, for selective removal of cyanide in waste water by complexation of the cyanide with ferrous ion followed by ion exchange, the sorption behaviour of the anionic ferrocyanide complex (Fe(CN)64-) on the resin operating in an acid salt form has been studied. The results are compared with those obtained on a conventional gel-type weak base resin, Amberlite IRA-68. The ferrocyanide complex is selectively sorbed in preference to other common ions and is readily stripped with dilute sodium hydroxide. PVP has a high sorption capacity, fast sorption kinetics and a rapid rate of regeneration, being much superior to Amberlite IRA-68 in all these respects. The sorption rate is film-diffusion controlled at low solution concentrations (< 0.8 mmol litre?1) and particle-diffusion controlled at higher concentrations (> 0.8 mmol dm?3). Lowering pH to ~ 1 increases the sorption of Fe(CN)64? on to protonated PVP by 75% over that at pH 7, a phenomenon explained by the formation of protonated ferrocyanide species, HFe(CN)63- and H2Fe(CN)62-. From column operations with 156 mg dm?3 cyanide waste stream a capacity of 73 mg CN? g?1 of protonated PVP to 1 mg dm?3 breakthrough is determined, compared to 60 mg CN? g?1 of protonated IRA-68.  相似文献   

3.
《分离科学与技术》2012,47(6):931-940
A method is described for the selective separation and extraction of cadmium-lead from aqueous solutions by tuning the pH value between 1.0 and 7.0. A modified nano-active silica sorbent was loaded with 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide hydrophobic ionic liquid, [Bmim+Tf2N?] and used in this work. The pH value was found to play a significant role in the sorption capacity of Cd(II) and Pb(II). In pH 1.0, the metal capacity values were characterized as 1.40 and 0.30 mmol g?1 for Cd(II) and Pb(II), respectively. In pH 7.0, Cd(II) and Pb(II) switched their capacity values to 0.65 and 1.00 mmol g?1, respectively. An anion exchange mechanism was proposed in solution with pH 1.0 for exchange of chloroanionic cadmium species by [Tf2N?]. The sorptive separation processes of Cd(II) and Pb(II) were studied and evaluated under the influence of various controlling factors. The potential applications of modified nano-silica sorbent for selective sorptive removal and separation of Cd(II) from Pb(II) in water samples was successfully accomplished by adjusting the pH value of the contact solution between 1.0 and 7.0. The results of this study indicated an efficient extraction behavior of the two examined metal ions.  相似文献   

4.
《分离科学与技术》2012,47(13):2003-2015
Two chelating ion exchangers possessing bis(2-pyridylmethyl)amine functional groups also known as bispicolylamine Dowex M4195, Lewatit® MonoPlus TP 220 were used for the selective removal of Cu(II) ions from acidic streams. The resin was characterized by CHNS elementary analysis, surface area, pore size, and volume analysis. After cutting by ultramicrotome, scans using electron microscope and optical profiler were recorded. For the first time the interiors of these resins after the sorption process were shown. Their superior binding affinities for Cu(II) was confirmed even under high acidities. Various physiochemical parameters like solution pH, ion exchange dose, presence of chloride, and sulfate ions in the system were studied in order to determine sorption capacity and kinetic parameters. The most effective chelating ion exchanger proved to be Lewatit® MonoPlus TP 220. Cu(II) ions sorption was affected by the presence of sulfate ions in the system. The monolayer sorption capacity (q0) for Lewatit® MonoPlus TP 220 was found to be 50.69 mg g?1 and 86.44 mg g?1 in the presence of chloride ions. The sorption of Cu(II) ions was found to be well represented by the pseudo second-order kinetics. The optimal desorption conditions were found using 1 M H2SO4 and 1 M NH4OH.  相似文献   

5.
《分离科学与技术》2012,47(12):1945-1957
Abstract

Sorption of selenite onto manganese dioxide has been investigated with respect to shaking time, concentration of sorbent and sorbate, nature of electrolyte, and influence of cations and anions. The sorption of other metal ions has been studied using optimal conditions selected for maximum sorption of selenite. The surface area, average pore diameter, porosity, and solid phase density of the sorbent have been measured. The sorption data followed only the Dubinin–Radushkevich (D–R) sorption isotherm among all the isotherms tested. The sorption capacity of 51.2 nmol·g?1 and a constant β related to sorption energy have been estimated to be ?0.007521 mol2·kJ?2. The sorption energy is found to be 8.15 kJ·mol?1. The kinetics of the sorption follows the Lagergren equation in the initial stages. The first-order rate constant, k′, was evaluated to be 0.498 min?1 and of intraparticle diffusion rate 3.06 × 10?5 mol·g?1·min?2. Among all the anions and cations tested, only carbonate, Fe(III), and citrate reduced the sorption significantly. The sorption data for other metal ions showed that Te(IV) can be separated from ions showing higher degree of sorption; especially Se(IV), As(III), Sb(V), and Eu(III). It can be concluded that manganese dioxide may be used for the separation of certain metal ions, their preconcentration from very dilute solutions, and for decontamination and treatment of industrial effluents.  相似文献   

6.
《分离科学与技术》2012,47(16):2406-2412
A new sulfonamide containing polymeric sorbent for the removal of mercury ions from waste waters was prepared starting from poly(glycidyl methacrylate)-b-poly(ethylene glycol)-b-poly(glycidyl methacrylate) (PGMA- b -PEG- b -PGMA) triblock copolymer prepared by using the ATRP method. Epoxy groups on the block copolymer were functionalized with amino groups. Ammonia-functionalized PGMA- b -PEG- b -PGMA was treated with excess of benzenesulfonyl chloride to obtain a sulfonamide-based polymeric sorbent. The sulfonamide containing the polymeric sorbent with a 3.5 mmol · g?1 total nitrogen content is able to selectively sorb mercury from aqueous solutions. The mercury sorption capacity of the resin is around 3.12 mmol g?1 under non-buffered conditions. Experiments performed in identical conditions with several metal ions revealed that Cd(II), Pb(II), Zn(II), Fe(III), and Fe(II) also were extractable in quantities (0–0.45 mmol/g). The sorbed mercury can be eluted by repeated treatment with 4 M HNO3 without hydrolysis of the sulfonamide groups.  相似文献   

7.
The aim of this research was to prepare magnesium ferrite (MgFe2O4) magnetic nanoparticles and to investigate their sorption characteristics towards Mn2+, Co2+, Ni2+, Cu2+ ions in aqueous solution. MgFe2O4 was synthesized by glycine-nitrate combustion method and was characterized by low crystallinity with crystallite size of 8.2?nm, particle aggregates of 13–25?nm, BET surface area of 14?m2/g and pore size of 8.0?nm. Sorption properties of MgFe2O4 towards Mn2+, Co2+, Ni2+, Cu2+ ions were studied using one-component model solutions and found to be dependent on metal ions concentration, contact time, pH and conditions of regeneration experiment. The highest sorption capacity of MgFe2O4 was detected towards Co2+ (2.30?mmol?g1) and Mn2+ (1.56?mmol?g?1) and the lowest towards Ni2+ (0.89?mmol?g?1) and Cu2+ (0.46?mmol?g?1). It was observed that sorption equilibrium occurs very quickly within 20–60?min. The pHzpc of sorbent was calculated to be 6.58. At studied pH interval (3.0–7.0) the sorption capacity of MgFe2O4 was not significantly affected. Regeneration study showed that the metal loaded sorbent could be regenerated by aqueous solution of 10?3 M MgCl2 at pH 6.0 within 120?min of contact time. Regeneration test suggested that MgFe2O4 magnetic sorbent can be efficiently used at least for four adsorption-desorption cycles. The high sorption properties and kinetics of toxic metal ion sorption indicates good prospects of developed sorbent in practice for wastewater treatment.  相似文献   

8.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

9.
《分离科学与技术》2012,47(10):1499-1504
The sorption of Sr2+ ions from aqueous solutions on magnetically modified fodder yeast (Kluyveromyces fragilis) cells and their subsequent desorption were studied. The Sr2+ sorption increased with increasing pH and reached a plateau between pH 4.0 and 7.0. The changes of temperature slightly influenced the sorption process. The sorption values were 19.5 mg g?1 and 53.5 mg g?1 for 10 mg L?1 and 40 mg L?1 Sr2+ solutions respectively after 20 min incubation at a pH higher than 4. The Langmuir isotherm was successfully used to fit experimental data; the maximum adsorption capacity was 140.8 mg g?1 under optimal conditions. The adsorbed Sr2+ ions can be desorbed with nitric acid (0.1 mol L?1).  相似文献   

10.
Chloromethylated polystyrene‐divinylbenzene has been functionalized with dithiooxamide. The resulting chelating resin (DTOA) has been characterized by elemental analyses, infrared spectroscopy, thermogravimetric analysis, and metal ion sorption capacities. It has been used for the preconcentration and separation of Cu(II), Zn(II), Cd(II), and Pb(II) prior to their determination by FAAS. Parameters such as the amount of the resin, effect of pH, equilibration rate, sorption and desorption of metal ions, and effect of diverse ions have been studied. The maximum sorption capacities found are 0.97, 0.12, 0.08, and 0.12 mmol g?1 for Cu(II), Zn(II), Cd(II), and Pb(II) at pH 6.0, 5.5, 1.0, and 5.5, respectively. The preconcentration factors are 100, 100, 50, and 50 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. Recoveries of the metal ions were 96 ± 5, 97 ± 6, 96 ± 5, and 96 ± 5 at 95% confidence level, whereas the limits of detection are 2.0, 1.3, 2.5, and 25.0 μg L?1 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The calibration curves were linear up to 12 μg mL?1 (R2 = 1.000), 2 μg mL?1 (R2 = 0.998), 2 μg ml?1 (R2 = 1.000), and 5 μg mL?1 (R2 = 0.979) for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The reliability of the method has been tested by analyzing certified samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2281–2285, 2007  相似文献   

11.
This work is focused on the removal of Ni(II) from aqueous solutions by sorption onto newly developed magnetite‐loaded calcium alginate particles. The uptake of Ni(II) by these magnetite particles, with their mean geometrical diameter 84 and 508 μm, is best described by the Freundlich isotherm and the constants KF and 1/n were found to be 3.491 mg g?1, 0.731 and 0.793 mg g?1 and 0.907, respectively. The mean sorption energy, as determined by Dubinin‐Radushkevich isotherm for 508‐ and 84‐μm sized particles was evaluated to be 8.9 and 8.0 kJ mol?1, respectively, thus, suggesting the ion‐exchange mechanism for uptake process. Of the various kinetic models proposed, the kinetic Ni(II)‐uptake data were best interpreted by “Simple Elovich” and “Power function” as suggested by their higher regression values. The almost linear nature of plots of log(% sorption) versus log(time) was indicative of intraparticle diffusion. The values of intraparticle diffusion coefficients Kid were found to be 63.49 × 10?2 and 94.35 × 10?2 mg l?1 min0.5. The intraparticle diffusion was also confirmed by Bangham equation. Finally, various thermodynamic parameters were evaluated. The negative ΔG° indicated spontaneous nature of uptake process while positive ΔH° value suggested exothermic nature of the sorption process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The sorption of Pb and Cd from aqueous solutions by spent Agaricus bisporus was investigated. The effects of contact time, pH, ionic medium, initial metal concentration, other metal ions presence and ligands were studied in batch experiments at 25°C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacities of 0.2345 and 0.1273 mmol g?1 for Pb and Cd respectively. Kinetic data followed the pseudo‐second‐order kinetic model. The presence of NaCl and NaClO4 caused a reduction in Cd sorption, while Pb sorption was not remarkably affected. The presence of other metals did not affect Pb removal, while the Cd removal was much reduced. HCl or EDTA solutions were able to desorb Cd from the spent Agaricus bisporus (SAB) completely, while an approximately 60% and 15% desorption yield was obtained for Pb when HCl 0.01 mol L?1 or EDTA 0.001 mol L?1 were used, respectively. The results of FTIR, SEM and EDX analysis indicated that other mechanisms, such as surface complexation and electrostatic interactions, must be involved in the metal sorption in addition to ion exchange. © 2012 Canadian Society for Chemical Engineering  相似文献   

13.
A sorbent was produced by chemical modification (tannic acid grafting) of polyethylenimine (PEI) and encapsulation in alginate gel beads. The sorbent was characterized by SEM-EDX and FTIR analyses before being used for the sorption of Cu(II), Zn(II) and Ni(II). The influence of pH was tested and sorption isotherms have been determined: the Langmuir equation fits well experimental data; for Cu(II), the bi-site Langmuir equation was preferred. Metal sorption capacity exceeds 1 mmol metal g?1 and amine groups (with hydroxyl groups of tannic acid or carboxylic groups of alginate) contribute to metal binding. The pseudo second-order rate equation fits kinetic profiles well.  相似文献   

14.
ABSTRACT

Studies of gold(III) ions sorption from hydrochloric acid solutions on 2,2‘-thiobisethanol dimethacrylate/ethylene glycol dimethacrylate copolymer were performed. The correlation between the concentration of HCl (0.0001–4 M) and sorption efficiency (370–140 mg g?1) was observed. The kinetics of sorption and the parameters of Langmuir and Freundlich isotherms for the studied systems were determined. The use of 0.8 M thiourea in 3 M HCl as eluent assured the high recovery degree of sorbed ions. It can, therefore, be concluded that newly synthesized sulfur-containing sorbent can be used in the recovery and concentration of gold(III) ions.  相似文献   

15.
《分离科学与技术》2012,47(5):818-824
Nano-sized boehmites with different crystallinity were synthesized at the temperature range of 25 to 200°C in order to produce phosphate absorbents with high capacity. The physicochemical property of boehmites was depended on the synthesis temperature: the particle size was increased and the surface area showed the maximum for the boehmite at 50°C. The phosphate sorptions into boehmites were analyzed at room temperature in the phosphoric acid solutions as a model of wastewater at the concentration of 0.1 to 3.0 mmol l?1 and the pH of 3 to 7. The boehmite synthesized at 50°C exhibited the highest amount of phosphate sorption (1.73 mmol g?1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore, the variation in the amount of phosphate sorption on the different boehmite samples depends strongly on the surface area in the specimens. In addition, the sample showed high stability in near-neutral-pH solutions, and an increase in pH toward neutral was found to lead to a decrease in phosphate sorption due to a change in the phosphate species and a reduction of the surface sites.  相似文献   

16.
《分离科学与技术》2012,47(1):203-222
Abstract

The decontamination of lead ions from aqueous media has been investigated using styrene‐divinylbenzene copolymer beads (St‐DVB) as an adsorbent. Various physico‐chemical parameters such as selection of appropriate electrolyte, contact time, amount of adsorbent, concentration of adsorbate, effect of foreign ions, and temperature were optimized to simulate the best conditions which can be used to decontaminate lead from aqueous media using St‐DVB beads as an adsorbent. The atomic absorption spectrometric technique was used to determine the distribution of lead. Maximum adsorption was observed at 0.001 mol L?1 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 0.2 g of adsorbent for 4.83×10?5 mol L?1 lead concentration in two minutes equilibration time. The adsorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms over the lead concentration range of 1.207×10?3 to 2.413×10?2 mol L?1. The characteristic Freundlich constants i.e. 1/n=0.164±0.012 and A=2.345×10?3±4.480×10?5 mol g?1 have been computed for the sorption system. Langmuir isotherm gave a saturated capacity of 0.971±0.011 mmol g?1, which suggests monolayer coverage of the surface. The sorption mean free energy from D‐R isotherm was found to be 18.26±0.75 kJ mol?1 indicating chemisorption involving chemical bonding for the adsorption process. The uptake of lead increases with the rise in temperature. Thermodynamic parameters i.e. ΔG, ΔH, and ΔS have also been calculated for the system. The sorption process was found to be exothermic. The developed procedure was successfully applied for the removal of lead ions from real battery wastewater samples.  相似文献   

17.
《分离科学与技术》2012,47(9-10):2434-2459
Abstract

Cyphos IL 101 (tetradecyl(trihexyl)phosphonium chloride) was immobilized on Amberlite XAD-7. The extractant impregnated resin (EIR) was very efficient at removing Zn(II) from HCl solutions (optimum found between 2 and 4 M HCl). Metal ions were removed as anionic chlorocomplexes (ZnCl4 2?) by ion exchange mechanism. The sorption strongly depended on the Cyphos IL 101 concentration in the EIR. The maximum sorption capacity was close to 20 mg Zn(II) g?1 EIR (i.e. 0.40 mol Zn(II) mol?1 Cyphos IL 101). The uptake kinetics were controlled by intraparticle diffusion (De: 1.2 10?11 ? 6 10?11 m2 min?1). Zn(II) can be easily desorbed using a number of eluents (including water and 0.1 M solution of HNO3, H2SO4, and Na2SO4), which maintained performance levels over 5 cycles.  相似文献   

18.
《分离科学与技术》2012,47(14):2123-2141
ABSTRACT

An alizarin red S (ARS)-modified anion-exchange resin was prepared by a simple reaction of ARS with the anion exchanger Doulite A101 and used for the efficient sorption of uranium from aqueous media. The effect of various parameters on the sorption of U(VI) (pH effect, sorption kinetics, resin capacity and breakthrough curves) was investigated. The modified resin sorbs U(VI) over a wide range of pH (2·8–5) with a maximum sorption capacity of 0·68 mmol.g?1 at pH 3·2 to 4·0. Iron (III), Zr(IV), Ti(IV), Cu(II), and Th(IV) ions are also sorbed to different extents, but Be(II), Bi(III), Ca(II), Mg(II), Pb(II), Hg(II), Zn(II), Cd(II), AI(III), Mn(II), Co(II) and Ni(II) are not sorbed; thus, conditions for separating U(VI) from these metal ions have been identified. For eluting U(VI) from the resin, 0·2 mol.L?1 HCl was used and the recovery recorded was as high as 99.9%. The use of ARS is extended to float uranium quantitatively and selectively from aqueous media at pH = 4 by using oleic acid as a surfactant. The different parameters affecting the flotation process have also been investigated. Uranium(VI) has been effectively separated from natural water samples and certified uranium ores using both procedures.  相似文献   

19.
《分离科学与技术》2012,47(12):1848-1859
Organic solvents such as ethanol, find a wide range of applications in fuel, pharmaceutical industries, food industries, and paint formulations, among others. The removal of Ag(I), Co(II), and Mn(II) ions in ethanol by cation exchange resin, Dowex 50W-x8, was investigated. The adsorption characteristics of metal ions onto Dowex 50W-x8 resin were described by Langmuir isotherms. The maximum sorption exchange capacities at 298 K were obtained as 47.4 mg g?1, 52.6 mg g?1, and 58.5 mg g?1 for Ag(I), Co(II), and Mn(II), respectively. The data was also fitted to Temkin and Dubinin-Radushkevich adsorption isotherm models to evaluate other adsorption properties. The ion exchange of silver, cobalt, and manganese on cation exchange resin followed pseudo-second-order kinetics, and the intraparticle diffusion was rate-determining step. The thermodynamic parameters indicated that the sorption of metal ions onto Dowex 50W-x8 resin was spontaneous (negative ΔG°) and endothermic in nature (positive ΔH°) implying that the adsorption capacity increased with increasing temperature. The resin can be regenerated by eluting metal ions with 3.0 mol L?1 HNO3 followed by washing it with 10 mL of Millipore water and 10 mL of 2.0 M NaOH, respectively. The proposed method was applied for metal ion removal in real ethanol samples.  相似文献   

20.
Batch adsorption experiments were carried out to remove heavy metal ions such as Cu (II), Ni (II), Cd (II), and Cr (VI) from single‐metal solutions using a polyaniline/palygorskite (PP) composite. Different parameters affecting the adsorption capacity such as contact time and pH of the solution have been investigated. The structural characteristics of the PP composite were studied in this work. Atomic absorption spectroscopy was used for the measurement of heavy metal contents, and the adsorption capacity (qe) calculated were 114 mg Cu (II) g?1, 84 mg Ni (II) g?1, 56 mg Cd (II) g?1, and 198 mg Cr (VI) g?1 under optimal conditions. The removal of the metal ions from solutions was assigned to chelation, ionic exchange, and electrostatic attraction. Data from this study proved that the novel organic/inorganic composite presents great potential in the recovery and elimination of noble or heavy metal ions from industrial wastewater. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号