首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying monomer, cerium (IV), temperature, and nature of silk. The graft yield increases with increasing monomer concentration up to 0.65 mol/l and with further increase of monomer, the graft yield decreases. The percentage of grafting increases with increasing ceric ion concentration up to 0.03 mol/l and thereafter it decreases. The rate of reaction is temperature dependent, with increasing temperature, the graft yield increases. The grafting is considerably influenced by chemical modification prior to grafting. The effect of different species of ceric ion and CuSO4 on the rate of grafting has also been investigated.  相似文献   

2.
The use of a bromate-thiourea redox system to initiate graft copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying the concentration of bromate ion, monomer, thiourea, the temperature and the solvent. The graft yield increases with increasing the bromate ion concentration up to 20 mmo1/1. With further increase of oxidant the graft yield decreases. The percentage of grafting increases with increase of hydrochloric acid up to 40 mmo1/1. Thereafter it decreases. The effect of increasing thiourea concentration up to 15 mmo1/1. is to bring about an increase in the graft yield. Above this concentration grafting decreases sharply. The rate of grafting increases with increase of temperature. The use of various water soluble solvents effects the percentage of grafting considerably. The alkali solubility of the grafted fiber has been investigated.  相似文献   

3.
Graft copolymerization of methyl methacrylate on cellulosic materials with the use of quinquevalent vanadium as an initiator was studied. Increase of V5+ion concentration up to 0.0025 mole/liter increases graft yield, and with further increase of the initiator the graft yield decreases. The graft yield increases with increase of monomer concentration. The increase of acid concentration is accompanied by decrease of graft yield. A measurable increase in graft yield was observed with increase in temperature from 65 to 75°C. The graft yield is medium and substrate dependent. A suitable kinetic scheme has been pictured and a rate equation has been derived.  相似文献   

4.
The graft copolymerization of methyl methacrylate onto polyester fibers (PET) was investigated using tetravalent cerium as the initiator. The rate of grafting was found to increase progressively with the initiator and monomer concentrations up to 2.5 × 10?2M and 70.41 × 10?2M, respectively. The reaction was found to be catalysed by acid up to 15.0 × 10?2M. The graft yield increased by increasing temperature. The effect of addition of some solvents and thiourea on the rate of grafting was also investigated. A suitable kinetic scheme has been pictured, and rate equations have been derived.  相似文献   

5.
The feasibility of chromium(VI) to induce graft polymerization of methyl methacrylate onto silk was investigated. The rate of grafting was determined by varying monomer concentration, chromium(VI) concentration, temperature, acidity of the medium, nature of the silk, reaction medium, and redox system. The graft yield increased with increasing monomer concentration up to 0.65M, and with further increase of monomer the graft yield decreased. The graft yield increased with increasing chromium(VI) concentration. The grafting is considerably influenced by chemical modification of silk prior to grafting. The graft yield is influenced by thiourea concentration, decreasing with increasing thiourea concentration. The effect of certain inorganic salts and anionic surfactants on the rate of grafting was investigated.  相似文献   

6.
7.
Graft copolymerization of methyl methacrylate onto wool was investigated in aqueous solution using peroxydisulfate catalysed by silver ions. The rate of grafting was determined by varying the concentration of monomer, peroxydisulfate ion, thiourea, the temperature and the solvent. The graft yield increased with increasing monomer concentration, peroxydisulfate concentration, thiourea concentration, and temperature in all cases to a certain value, beyond of which a decrease in graft yield was observed. The effect of certain inorganic salts and water soluble solvents on the rate of grafting was investigated. The alkali solubility of the grafted fiber was studied.  相似文献   

8.
The ability of potassium permanganate in the presence of different acids to induce grafting of methyl methacrylate and acrylonitrile onto sodium hydroxide-treated cotton, partially carboxymethylated cotton, partially cyanoethylated cotton, and partially acetylated cotton was investigated. The copolymerization reaction was carried out under a variety of conditions. The graft yields are greatly enhanced by increasing concentration of monomer, reaction time, and temperature. The opposite holds true for initiator at higher concentrations. The effectiveness of the acids was: nitric acid > sulfuric acid > perchloric acid > hydrochloric acid. The change in the physical and/or chemical structure of cellulose by its modification via etherification reaction or esterification reaction had a significant effect on the susceptibility of cellulose toward grafting. While partial carboxymethylation or partial cyanoethylation of cellulose prior to grafting increased the graft yield, partial acetylation caused a decrease.  相似文献   

9.
The graft copolymerization of methyl methacrylate onto modified cellulose was studied at 60° causing peroxydiphosphate as the initiator. The rate of grafting in case of different modified cellulose was determined by varying peroxydiphosphate, monomer, nature of substrate, and temperature. The molecular weight of the isolated polymer has been determined, and the mechanism of grafting is discussed.  相似文献   

10.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) with a potassium diperiodatonickelate(IV) [Ni(IV)]–PVA redox system as an initiator was investigated in an alkaline medium. The grafting parameters were determined as functions of the temperature and the concentrations of the monomer and initiator. The structures of the graft copolymers were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The Ni(IV)–PVA system was found to be an efficient redox initiator for this graft copolymerization. A single‐electron‐transfer mechanism was proposed for the formation of radicals and the initiation. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate, n‐butyl acrylate, and n‐butyl methacrylate, were used as reductants for graft copolymerization. These reactions definitely occurred to some degree. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 529–534, 2003  相似文献   

11.
12.
The graft copolymerization of methyl methacrylate onto Mulberry silk fibers was studied in aqueous solution using Mn(acac)3 as initiator. Perchloric acid was found to catalyze the reaction. The rate of grafting was investigated by varying the concentration of the monomer and the complex, acidity of the medium, the solvent composition of the reaction medium, the surfactants, and the inhibitors. The graft yield increases with increasing concentration of Mn(acac)3 up to 0.01 mol/L, decreasing thereafter. Increase of MMA concentration up to 0.56 mol/L increases graft yield, and thereafter it decreases. Among the various vinyl monomers studied, MMA was found to be most suitable for grafting. Grafting increases up to 7.5 × 10?3 mol/L of HClO4 concentration, and thereafter it decreases. A suitable reaction scheme has been proposed and a rate equation has been derived. The energy of activation has been calculated from the Arrhenius plot. The chain transfer constants for various chain transfer solvents have been evaluated from the average molecular weight (M?) of grafted poly(methyl methacrylate).  相似文献   

13.
Graft copolymerization of vinyl monomers, mainly methyl methacrylate, in reduced, successively alkylated, or KCN-Treated wool fibers was performed in the redox LiBr–persulfate system without homopolymer. The reduction gives a striking effect in promoting the graft copolymerization. Methylation or ethylene recrosslinking of the reduced wool, especially the former, decreases the graft-on remarkably. By the KCN treatment in which the conversion of disulfide to lanthionine bonds occurs, the grafting is decreased in the bromide–persulfate system but promoted in the system with persulfate alone. Methylation or KCN treatment of wool as well as reduction brings about a great increase in the absorption of persulfate. The grafting of the lanthionine-containing wool in the redox system accompanied by the liberation of bromine might be retarded by the pronounced bromination of monomers over the inhibiting of homopolymerization, because the lanthionine bonds are more stable to bromine than the disulfide bonds. In general, disulfide bonds and the other easily oxidized components of wool may perhaps play an important role in regulating the bromination of monomers and in the graft copolymerization without homopolymer. The molecular weight of graft polymer is decreased distinctly with increasing extent of reduction of wool. From these results, the thiol groups on wool are considered to give predominantly graft centers by the radicalotropy from SO4, OH·, and/or Br·.  相似文献   

14.
Graft copolymers of acrylonitrile, ethyl acrylate, methyl acrylate, ethyl methacrylate and methyl methacrylate and of acrylonitrile/ethyl methacrylate and acrylonitrile/methyl methacrylate monomer mixtures on carboxymethylcellulose (degree of substitution 0.4–0.5) were prepared by use of ceric ion initiator in aqueous medium. The extent of graft polymer formation was measured in terms of graft level, molecular weight of grafted polymer chains and frequency of grafting as function of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight and frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen content of the acrylonitrile/alkyl methacrylate copolymer samples showed that a relativity low amount of the acrylonitrile monomeric units were incorporated into the graft copolymer even at high acrylonitrile content of the feed.  相似文献   

15.
16.
17.
18.
A method of graft copolymerization of hydrophilic monomers, such as 1-vinyl-2-pyrrolidone, acrylonitrile, acrylic acid, and acrylamide, onto irradiated polypropylene fibers has been studied. γ ray as well as electron beam were employed for the irradiation processes. Graft-copolymerization kinetics and the properties of grafted fibers have been investigated. Moisture regain, dyes absorption, and melting point of the grafted fibers were found to increase with the increasing of the degree of grafting. Polypropylene for 1-vinyl-2-pyrrolidone grafted fibers showed excellent dye absorption for almost all kinds of dyes such as direct, basic, acid, reactive, disper, and naphthol dyes. However, for polypropylene acrylic acid grafted fibers, the colorfastness to washing was found to be unsatisfactory. The colorfastness to washing for polypropylene 1-vinyl-2-pyrrolidone grafted fibers was found to be fairly good for certain types of dyes such as vat and naphthol dyes.  相似文献   

19.
The graft copolymerization of methyl methacrylate onto silk initiated by thallium (III) perchlorate was investigated in aqueous medium. The rate of grafting was evaluated varying the concentration of monomer, initiator, and acid, and the temperature. The graft yield was found to increase with increasing the monomer and initiator concentrations. The graft yield was found to decrease with increasing the acid concentration. The effect of inhibitors and various solvents on the graft yield was studied. From the Arrhenius plot the overall activation energy was found to be 4.2 kcal/mol. A suitable kinetic scheme has been proposed, and a rate equation has been derived.  相似文献   

20.
Poly(vinyl chloride) (PVC) was dehydrochlorinated in alkali solution and then grafted with N‐isopropylacrylamide (NIPAM) using benzoyl peroxide as an initiator under a nitrogen atmosphere. The results show that grafting of NIPAM onto dehydrochlorinated PVC (DHPVC) by means of chemical initiation is easily performed. The influence of various reaction conditions such as NIPAM concentration, reaction time, initiator concentration, and PVC content on the grafting copolymerization was investigated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1234–1241, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号