首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The preparation of specimens for detailed TEM microanalysis of micrometre-diameter, ceramic fibre cross-sections is described. The starter material is ceramic fibre in powder form and both ultramicrotomy-based and ion beam thinning-based methods are described. Requirements for specimens of uniform and adequate thinness, for easy selection of representative fibre cross-sections within the same specimen and for a reliable and time-efficient preparation method, resulted in choice of the ultramicrotomy-based method and the associated development of a novel extrusion and sedimentation technique of embedding the fibres to provide necessary pre-alignment and packing.  相似文献   

2.
A new preparation method has been developed in order to avoid the breaking of brittle samples for plan-view TEM investigation during and after mechanical and ion beam thinning. The thinning procedure is carried out on a reduced size piece of the sample (about 1.6 x 0.8 mm(2) or about 1-1.6 mm diameter) that is embedded into a 3-mm-diameter Ti disk, which fits the sample holder of the TEM. The small sample size and the supporting metal disk assure the mechanical stability and minimize the possibility of breaking during and after the preparation: The Ti disk is placed on adhesive kapton tape, a cut piece of the sample is put into the slot of the disk, pressed onto the tape and embedded with glue. The tape keeps the parts in place and in the same plane, keeps the sample surface safe from the embedding glue and can be removed easily after the glue solidifies. Subsequently, the embedded sample is thinned from the rear by well-known mechanical and ion beam techniques until electron transparency. This simple solution lowers the risk of failed sample preparation remarkably and makes it possible to reduce the thickness of the sample to about 50 microm by mechanical thinning. As a result, dimpling becomes unnecessary and low angle ion milling gives a large transparent area for TEM. Its efficiency has been proved by successful preparation of numerous thin film samples on Si, sapphire, and glass substrates. The method is compatible with the widespread cross-sectional thinning procedures, and can be easily adopted by TEM laboratories.  相似文献   

3.
This paper describes a procedure to prepare metal–oxide interfaces for transmission electron microscopy by the focused ion beam technique. The advantage of this procedure is to allow the observation of metal–oxide interfaces of irradiated samples with a homogeneous thickness without the need to have an instrument inside laboratories that are specialized for the manipulation of irradiated materials. A transmission electron microscopy sample is prepared by this method and analysed.  相似文献   

4.
Analysis of presolar silicate grains provides new knowledge on interstellar and circumstellar environments and can be used to test models of the Galactic chemical evolution. However, structural information of these grains is rare because sample preparation for transmission electron microscopy is very difficult due to the small dimensions of these grains (<0.5 μm). With the use of the focused ion beam technique thin foils from these grains for transmission electron microscopy analysis can be prepared. Nevertheless, reaching the required precision of some tens of nanometres for the preparation of the transmission electron microscopy foil in the place of interest is not trivial. Furthermore, in the current samples, the grain of interest can only be identified by its different isotopic composition; i.e. there is no contrast difference in scanning electron microscopy or transmission electron microscopy images which allow the identification of the grain. Therefore, the grain has to be marked in some way before preparing the transmission electron microscopy foil. In the present paper, a method for transmission electron microscopy foil preparation of grains about 200 to 400 nm in diameter is presented. The method utilizes marking of the grain by Pt deposition and milling of holes to aid in the exact orientation of the transmission electron microscopy foil with respect to the grain. The proposed method will be explained in detail by using an example grain.  相似文献   

5.
6.
Li S  Feng Z  Zhang L  Wang Y  Chen L 《Ultramicroscopy》2011,111(2):117-122
An applicable method to prepare transmission electron microscopy specimens from ceramic fibers for longitudinal and cross-sectional observations is investigated. The method includes novel embedding processes to fix fibers, a polishing process using a self-manufactured device to get uniformly low thickness (40 μm for L-fiber, 60 μm for C-fiber), a one-side dimpling process to grind the specimen to near electron transparency (about 5 μm in thickness for both L-fiber and C-fiber) and an efficient ion milling process using calculated parameters. These techniques are reliable to accomplish the preparation with high quality in a relatively short time. Many factors related to the preparation processes are discussed.  相似文献   

7.
The structure of GaMnAs nanowires (NW) with nominal Mn concentration of up to 7 at% was investigated by transmission electron microscopy. The (Ga,Mn)As NW were grown on epiready GaAs(001) n -type wafers by molecular beam epitaxy. The crystal structure of the NW was determined to be zinc-blende. NW with Mn concentrations lower than 5 at% grow along the 〈111〉 direction. NW with higher Mn concentrations grow along the 〈110〉 direction and reveal a branching structure. The main nanowire and branches grow along the 〈110〉 directions belonging to only one {111} plane.  相似文献   

8.
Cross-sectional transmission electron microscopy (TEM) sample preparation of ZnSe/GaAs epitaxial films is investigated. Conventional argon ion milling is shown to produce a high density (~ 5–8 × 1011/cm2) of small (diameter ~ 60–80 Å) extended defects (stacking faults, microtwins, double positioning twins, etc.). In addition, transmission electron diffraction results indicate a thin ZnO layer can also occasionally form upon ion milling or electron-beam irradiation although the exact conditions for ZnO formation are not well understood. Conventional TEM (amplitude contrast) and high-resolution TEM (phase contrast) imaging in combination with transmission electron diffraction studies were performed to determine the optimum method of removing the ion milling related damage and ZnO layers during sample preparation. HF/HCl, NaOH/H2O, H2SO4/H2O2/H2O and Br2/CH3OH etching mixtures as well as low voltage argon or iodine ion milling were studied. A low energy (2 ke V) iodine or argon ion milling step was shown to remove the ZnO layer and reduced the density of the extended defects associated with Ar+ ion milling, but was unsuccessful in removing all of the defects. Auger electron spectroscopy results indicate residual iodine was either left on the surface or implanted beneath the surface during iodine ion milling. Etching the XTEM samples in HF/HCl was shown to be effective in removing the ZnO layer but had little or no effect on the ion milling induced defects. Etching the samples in a 0.5% Br2/CH3OH solution resulted in complete elimination of the ion milling induced extended defects including the residual defects associated with iodine ion milling. In addition the Br2/CH3OH etch produced the best surface morphology. Thus a brief (1–2 seconds) Br2/CH3OH etch after conventional preparation (argon ion milling) of cross-sectional ZnSe/GaAs TEM samples appears to be an inexpensive and superior alternative to iodine ion milling.  相似文献   

9.
A cross-sectional sample preparation technique is described that relies on lithographic and dry-etching processing, thus avoiding metallographic polishing and ion milling. The method is capable of producing cross-sectional transmission electron microscopy samples with a large amount of transparent area (1 μm × 2.5 mm) which allows the examination of many patterned test sites on the same sample from the same chip of a silicon wafer. An example of the application of the technique is given for localized oxidation through a mask.  相似文献   

10.
We investigate Ar ion‐milling rates and Ga‐ion induced damage on sample surfaces of Si and GaAs single crystals prepared by focused ion beam (FIB) method for transmission electron microscopy observation. The convergent beam electron diffraction technique with Bloch simulation is used to measure the thickness of the Ar‐ion milled samples to calculate the milling rates of Si and GaAs single crystals. The measurement shows that an amorphous layer is formed on the sample surface and can be removed by further Ar‐ion milling. In addition, the local symmetry breaking induced by FIB is investigated using quantitative symmetry measurement. The FIBed‐GaAs sample shows local symmetry breaking after FIB milling, although the FIBed‐Si sample has no considerable symmetry breaking.  相似文献   

11.
Selective photoelectrochemical etching has been employed in order to thin samples of ZnSe epilayers grown on GaAs (100) substrates by metal organic vapour phase epitaxy (MOVPE). The difference in band-gap between the epilayer and substrate was exploited such that only the substrate material was subject to the etching procedure. Samples prepared in this way have been studied by transmission electron microscopy (TEM) and the results of these studies are compared to results obtained by alternative cross-sectional analysis.  相似文献   

12.
The focused ion beam (FIB) was used to prepare cross sections of precisely selected regions of the digestive gland epithelium of a terrestrial isopod P. scaber (Isopoda, Crustacea) for scanning electron microscopy (SEM). The FIB/SEM system allows ad libitum selection of a region for gross morphologic to ultrastructural investigation, as the repetition of FIB/SEM operations is unrestricted. The milling parameters used in our work proved to be satisfactory to produce serial two-dimensional (2-D) cuts and/or three-dimensional (3-D) shapes on a submicrometer scale. A final, cleaning mill at lower ion currents was employed to minimize the milling artifacts. After cleaning, the milled surface was free of filament- and ridge-like milling artifacts. No other effects of the cleaning mill were observed.  相似文献   

13.
MoSx thin films were deposited by ion beam enhanced deposition (IBED) and magnetron sputtering (MS) onto the surface of IBEN Si3N4 and TiN thin films. The friction and wear performances of thin films and 52100 steel were compared using an SRV model reciprocating testing machine. The results showed that all MoSx films exhibit good tribological behavior. The MS MoSx thin film has better wear resistance and the IBED MoSx film has a longer wear life. The wear resistance of IBED Si3N4 and TiN thin film plus MoSx film is 3–4 times and 8–20 times that of single IBED Si3N4 and TiN thin films and 52100 steel respectively. The analyses indicate that the difference in friction and wear performance between the two kinds of MoSx thin film is determined by the x value of MoSx, its microstructure and the atom mixing effect at the interface.  相似文献   

14.
In order to have available a specimen holder suited to measure the beam current as is often required in quantitative electron probe X-ray microanalysis, the rod of a low background beryllium specimen holder of a transmission electron microscope was modified. The tip was electrically insulated from the mass of the microscope and connected electrically to the central contact of a BNC connector mounted on the specimen holder handle. With this modified specimen holder the current absorbed by the specimen and/or the specimen holder could be measured easily and accurately. The modified specimen holder has been used to measure the beam current stability of an analytical electron microscope under various conditions. Data were obtained for tungsten as well as lanthanum hexaboride cathodes. Small changes to other types of specimen tips made it possible to exchange these for the low background tip.  相似文献   

15.
Tomography in a focused ion beam (FIB) scanning electron microscope (SEM) is a powerful method for the characterization of three-dimensional micro- and nanostructures. Although this technique can be routinely applied to conducting materials, FIB–SEM tomography of many insulators, including biological, geological and ceramic samples, is often more difficult because of charging effects that disturb the serial sectioning using the ion beam or the imaging using the electron beam. Here, we show that automatic tomography of biological and geological samples can be achieved by serial sectioning with a focused ion beam and block-face imaging using low-kV backscattered electrons. In addition, a new ion milling geometry is used that reduces the effects of intensity gradients that are inherent in conventional geometry used for FIB–SEM tomography.  相似文献   

16.
This paper reports a procedure to combine the focused ion beam micro‐sampling method with conventional Ar‐milling to prepare high‐quality site‐specific transmission electron microscopy cross‐section samples. The advantage is to enable chemical and structural evaluations of oxygen dissolved in a molten iron sample to be made after quenching and recovery from high‐pressure experiments in a laser‐heated diamond anvil cell. The evaluations were performed by using electron energy‐loss spectroscopy and high‐resolution transmission electron microscopy. The high signal to noise ratios of electron energy‐loss spectroscopy core‐loss spectra from the transmission electron microscopy thin foil, re‐thinned down to 40 nm in thickness by conventional Argon ion milling, provided us with oxygen quantitative analyses of the quenched molten iron phase. In addition, we could obtain lattice‐fringe images using high‐resolution transmission electron microscopy. The electron energy‐loss spectroscopy analysis of oxygen in Fe0.94O has been carried out with a relative accuracy of 2%, using an analytical procedure proposed for foils thinner than 80 nm. Oxygen K‐edge energy‐loss near‐edge structure also allows us to identify the specific phase that results from quenching and its electronic structure by the technique of fingerprinting of the spectrum with reference spectra in the Fe‐O system.  相似文献   

17.
A new device (NTEGRA Tomo) that is based on the integration of the scanning probe microscope (SPM) (NT‐MDT NTEGRA SPM) and the Ultramicrotome (Leica UC6NT) is presented. This integration enables the direct monitoring of a block face surface immediately following each sectioning cycle of ultramicrotome sectioning procedure. Consequently, this device can be applied for a serial section tomography of the wide range of biological and polymer materials. The automation of the sectioning/scanning cycle allows one to acquire up to 10 consecutive sectioned layer images per hour. It also permits to build a 3‐D nanotomography image reconstructed from several tens of layer images within one measurement session. The thickness of the layers can be varied from 20 to 2000 nm, and can be controlled directly by its interference colour in water. Additionally, the NTEGRA Tomo with its nanometer resolution is a valid instrument narrowing and highlighting an area of special interest within volume of the sample. For embedded biological objects the ultimate resolution of SPM mostly depends on the quality of macromolecular preservation of the biomaterial during sample preparation procedure. For most polymer materials it is comparable to transmission electron microscopy (TEM). The NTEGRA Tomo can routinely collect complementary AFM and TEM images. The block face of biological or polymer sample is investigated by AFM, whereas the last ultrathin section is analyzed with TEM after a staining procedure. Using the combination of both of these ultrastructural methods for the analysis of the same particular organelle or polymer constituent leads to a breakthrough in AFM/TEM image interpretation. Finally, new complementary aspects of the object's ultrastructure can be revealed.  相似文献   

18.
We report the use of a focused ion beam/scanning electron microscope (FIB/SEM) for simultaneous investigation of digestive gland epithelium gross morphology and ultrastructure of multilamellar intracellular structures. Digestive glands of a terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) were examined by FIB/SEM and by transmission electron microscopy (TEM). The results obtained by FIB/SEM and by TEM are comparable and complementary. The FIB/SEM shows the same ultrastructural complexity of multilamellar intracellular structures as indicated by TEM. The term lamellar bodies was used for the multillamellar structures in the digestive glands of P. scaber due to their structural similarity to the lamellar bodies found in vertebrate lungs. Lamellar bodies in digestive glands of different animals vary in their abundance, and number as well as the thickness of concentric lamellae per lamellar body. FIB/SEM revealed a connection between digestive gland gross morphological features and the structure of lamellar bodies. Serial slicing and imaging of cells enables easy identification of the contact between a lamellar body and a lipid droplet. There are frequent reports of multilamellar intracellular structures in different vertebrate as well as invertebrate cells, but laminated cellular structures are still poorly known. The FIB/SEM can significantly contribute to the structural knowledge and is always recommended when a link between gross morphology and ultrastructure is investigated, especially when cells or cellular inclusions have a dynamic nature due to normal, stressed or pathological conditions.  相似文献   

19.
The feasibility of the renal epithelial LLC-PK1 cell line as a model for cell division studies with secondary ion mass spectrometry (SIMS) was tested. In this cell line, cells undergoing all stages of mitosis and cytokinesis remained firmly attached to the substrate and could be cryogenically prepared. Fractured freeze-dried mitotic cells showed well-preserved organelles as revealed by fluorescence imaging of rhodamine-123 and C6-NBD-ceramide by confocal laser scanning microscopy. Secondary electron microscopy analysis of fractured freeze-dried dividing cells revealed minimal surface topography that does not interfere in isotopic imaging of both positive (39K, 23Na, 24Mg, 40Ca, etc.) and negative (31P, 35Cl, etc.) secondaries with a CAMECA IMS-3f ion microscope. Mitotic cells revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of 39K+ and 23Na+) as revealed by K : Na ratios of approximately 10. Structurally damaged mitotic cells could be identified by their reduced K : Na ratios and an excessive loading of calcium. Quantitative three-dimensional SIMS analysis was required for studying subcellular calcium distribution in dividing cells. The LLC-PK1 model also allowed SIMS studies of M-phase arrested cells with mitosis-arresting drugs (taxol, monastrol and nocodazole). This study opens new avenues of cell division research related to ion fluxes and chemical composition with SIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号