首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
An on-line television-rate digital frame store device is utilized to provide color representations of a wide range of electron microscope images and image data. Various types of hardware devices in the frame store coupled with software manipulations via the host computer make rapid image acquisition, modification, measurement, and full-color display possible in real time either from micrographs or directly from an electron microscope. Lookup tables used in conjunction with grey-level image memories can be controlled from a menu display to provide a wide range of color-coding schemes and sequencing. It is also possible to use color graphics overlays and alpha numeric displays along with full-color image displays. This paper will describe many of the recent applications of color developed for electron microscopy studies of materials.  相似文献   

2.
A general method for computing high-resolution conventional transmission electron microscope images and diffraction patterns, when there are different types of partially coherent illumination conditions, is described. Examples of convergent beam, hollow cone, and virtual aperture illumination conditions are given in the context of interpreting image features. A comparison of real and computed diffraction patterns shows that, in practice, many innovative imaging modes are possible, which can be verified prior to real microscope experiments.  相似文献   

3.
Cryogenic transmission electron microscopy of high‐pressure freezing (HPF) samples is a well‐established technique for the analysis of liquid containing specimens. This technique enables observation without removing water or other volatile components. The HPF technique is less used in scanning electron microscopy (SEM) due to the lack of a suitable HPF specimen carrier adapter. The traditional SEM cryotransfer system (PP3000T Quorum Laughton, East Sussex, UK; Alto Gatan, Pleasanton, CA, USA) usually uses nitrogen slush. Unfortunately, and unlike HPF, nitrogen slush produces water crystal artefacts. So, we propose a new HPF specimen carrier adapter for sample transfer from HPF system to cryogenic‐scanning electronic microscope (Cryo‐SEM). The new transfer system is validated using technical two applications, a stearic acid in hydroxypropyl methylcellulose solution and mice myocardium. Preservation of samples is suitable in both cases. Cryo‐SEM examination of HPF samples enables a good correlation between acid stearic liquid concentration and acid stearic occupation surface (only for homogeneous solution). For biological samples as myocardium, cytoplasmic structures of cardiomyocyte are easily recognized with adequate preservation of organelle contacts and inner cell organization. We expect this new HPF specimen carrier adapter would enable more SEM‐studies using HPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号