首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

2.
In this contribution, they have attempted to develop a labeling technique for in vivo imaging of functionally active plasmid DNA in cyanobacterial cells through its decoration with semiconductor quantum dots (Qdots) as fluorescent nanoprobes. For that purpose biotinylated plasmid slr2060 DNA was conjugated with Qdots‐streptavidine. The intact DNA was visualized in a single green color by light microscopy. These Qdots‐DNA conjugates were capable of expressing the acyltransferase enzyme. Qdots‐DNA conjugates and confocal microscope imaging technique were adopted to visualize the gene transport across the membrane of the live cyanobacteria cell in real time. Long‐term kinetic study enabled to reveal the steps of extracellular and intracellular microenvironment for plasmid transportation into the live cell. To confirm these processes a confocal microscope and indicator plate assay test were applied in tandem. In this contribution, Qdots‐labeled plasmid DNA was utilized for the first time for long‐term intracellular imaging studies in cyanobacteria species PCC6803. The results showed that the Qdots‐labeled plasmid DNA detection could be used as a powerful labeling technique for visualization of exogenous DNA entry and tracking into living cells by confocal microscopy. Microsc. Res. Tech. 79:447–452, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
A combined optical and atomic force microscope for live cell investigations   总被引:6,自引:0,他引:6  
We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ("receptor-positive sites") was significantly higher than that on sites lacking receptors.  相似文献   

4.
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.  相似文献   

5.
We present a custom-designed atomic force fluorescence microscope (AFFM), which can perform simultaneous optical and topographic measurements with single molecule sensitivity throughout the whole visible to near-infrared spectral region. Integration of atomic force microscopy (AFM) and confocal fluorescence microscopy combines the high-resolution topographical imaging of AFM with the reliable (bio)-chemical identification capability of optical methods. The AFFM is equipped with a spectrograph enabling combined topographic and fluorescence spectral imaging, which significantly enhances discrimination of spectroscopically distinct objects. The modular design allows easy switching between different modes of operation such as tip-scanning, sample-scanning or mechanical manipulation, all of which are combined with synchronous optical detection. We demonstrate that coupling the AFM with the fluorescence microscope does not compromise its ability to image with a high spatial resolution. Examples of several modes of operation of the AFFM are shown using two-dimensional crystals and membranes containing light-harvesting complexes from the photosynthetic bacterium Rhodobacter sphaeroides.  相似文献   

6.
Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.  相似文献   

7.
《仪器科学与技术》2013,41(1):11-16
Fourier transform imaging spectroscopy was combined with fluorescence microscopy and a cooled CCD detector for examination of human oral tissues. Oral tissue fragments, obtained from patients, were irradiated at 365 nm by a mercury lamp through the microscope objectives. Microscope images were transferred to an imaging Fourier transform spectrometer and to a CCD camera for simultaneous recording of the fluorescence spectra at each image pixel. Detailed information was observed at a microscopic resolution. Oral tissue fragments were also treated with aluminum phthalocyanine tetrasulfonatre (AlPcS4) prior to irradiation and imaging. Since the latter is preferentially retained in proliferating vascular tissue such as oral tumors, its effect upon the fluorescence imaging is of practical importance. AlPcS4 is highly soluble in biological solutions and has a strong absorbance at our excitation wavelength and a strong emission peak at λ = 680 nm; therefore, it was found suitable for detection of malignant tumors by this method. It was found that the proposed spectral imaging method, when combined with fluorescence labeling, allows for direct, in vivo, medical examination of oral tissues with detailed spatial resolution.  相似文献   

8.
Optical-sectioning, digital fluorescence microscopy provides images representing temporally- and spatially-resolved molecular-scale details of the substructures of living cells. To render such images into solid models for further computational analyses, we have developed an integrated system of image acquisition, processing, and rendering, which includes a new empirical technique to correct for axial distortions inherent in fluorescence microscopy due to refractive index mismatches between microscope objective immersion medium, coverslip glass, and water. This system takes advantage of the capabilities of ultra-high numerical aperture objectives (e.g. total internal reflection fluorescence microscopy) and enables faithful three-dimensional rendering of living cells into solid models amenable to further computational analysis. An example of solid modeling of bovine aortic endothelial cells and their nuclei is presented. Since many cellular level events are temporally and spatially confined, such integrated image acquisition, processing, rendering, and computational analysis, will enable, in silico, the generation of new computational models for cell mechanics and signaling.  相似文献   

9.
Kano H  Jakobs S  Nagorni M  Hell SW 《Ultramicroscopy》2001,90(2-3):207-213
We report the development of simultaneous two-color channel recording in 4Pi-confocal microscopy. A marked increase of spatial resolution over confocal microscopy becomes manifested in 4Pi-confocal three-dimensional (3D) data stacks of dual-labeled objects. The fundamentally improved resolution is verified both with densely labeled fluorescence beads as well as with membrane labeled fixed Escherichia coli. The synergistic combination of dual-color 4Pi-confocal recording with image restoration results in dual-color imaging with a 3D resolution in the 100 nm range.  相似文献   

10.
李龙谭  及少勇  张洪飞  郭汉明 《光学仪器》2016,38(5):441-444,455
为解决传统光学显微镜样本上每一点的图像都受到邻近点衍射或散射光干扰的问题,研发了一套基于C#WinForm控制平台进行连续扫描方式的激光共焦扫描显微镜(LCSM)系统,并且成功地对生物细胞进行了扫描成像。针对共焦显微镜图像像质不高的问题,提出合理选取探测器针孔直径,并通过高斯低通滤波、盲解卷积的方法,确保实现高像质。实验结果表明,基于上述方法改进后的LCSM具有较高图像质量,该方法简单易行,便于实施。  相似文献   

11.
We report on fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. Our apertureless microscope is designed around a confocal fluorescence microscope associated with an AFM head. First, we show that the confocal microscope alone allows single molecule imaging and single molecule fluorescence analysis. When associated with the AFM head, we demonstrate, for the first time to our knowledge, that single molecule fluorescence is enhanced under the silicon tip. We tentatively attribute this effect to field enhancement under the tip.  相似文献   

12.
We report on fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. Our apertureless microscope is designed around a confocal fluorescence microscope associated with an AFM head. First, we show that the confocal microscope alone allows single molecule imaging and single molecule fluorescence analysis. When associated with the AFM head, we demonstrate, for the first time to our knowledge, that single molecule fluorescence is enhanced under the silicon tip. We tentatively attribute this effect to field enhancement under the tip.  相似文献   

13.
This article reports about the development and application of a standing-wave fluorescence microscope (SWFM) with high nodal plane flatness. As opposed to the uniform excitation field in conventional fluorescence microscopes an SWFM uses a standing-wave pattern of laser light. This pattern consists of alternating planar nodes and antinodes. By shifting it along the axis of the microscope a set of different fluorescent structures can be distinguished. Their axial separation may just be a fraction of a wavelength so that an SWFM allows distinction of structures which would appear axially unresolved in a conventional or confocal fluorescence microscope. An SWFM is most powerful when the axial extension of the specimen is comparable to the wavelength of light. Otherwise several planes are illuminated simultaneously and their separation is hardly feasible. The objective of this work was to develop a new SWFM instrument which allows standing-wave fluorescence microscopy with controlled high nodal plane flatness. Earlier SWFMs did not allow such a controlled flatness, which impeded image interpretation and processing. Another design goal was to build a compact, easy-to-use instrument to foster a more widespread use of this new technique. The instrument developed uses a green-emitting helium–neon laser as the light source, a piezoelectric movable beamsplitter to generate two mutually coherent laser beams of variable relative phase and two single-mode fibres to transmit these beams to the microscope. Each beam is passed on to the specimen by a planoconvex lens and an objective lens. The only reflective surface whose residual curvature could cause wavefront deformations is a dichroic beamsplitter. Nodal plane flatness is controlled via interference fringes by a procedure which is similar to the interferometric test of optical surfaces. The performance of the instrument was tested using dried and fluorescently labelled cardiac muscle cells of rats. The SWFM enabled the distinction of layers of stress fibres whose axial separation was just a fraction of a wavelength. Layers at such a small distance would lie completely within the depth-of-field of a conventional or confocal fluorescence microscope and could therefore not be distinguished by these two methods. To obtain futher information from the SWFM images it would be advantageous to use the images as input-data to image processing algorithms such as conceived by Krishnamurthi et al. (Proc. SPIE, 2655, 1996, 18–25). To minimize specimen-caused nodal plane distortion, the specimen should be embedded in a medium of closely matched refractive index. The proper match of the refractive indices could be checked via the method presented here for the measurement of nodal plane flatness. For this purpose the fluorescent layer of latex beads would simply be replaced by the specimen. A combination of the developed SWFM with a specimen embedded in a medium of matched refractive index and further image processing would exploit the full potential of standing-wave fluorescence microscopy.  相似文献   

14.
Fluorescence microscopy of the dynamics of living cells presents a special challenge to a microscope imaging system, simultaneously requiring both high spatial resolution and high temporal resolution, but with illumination levels low enough to prevent fluorophore damage and cytotoxicity. We have compared the high-speed Yokogawa CSU10 spinning disc confocal system with several conventional single-point scanning confocal (SPSC) microscopes, using the relationship between image signal-to-noise ratio and fluorophore photobleaching as an index of system efficiency. These studies demonstrate that the efficiency of the CSU10 consistently exceeds that of the SPSC systems. The high efficiency of the CSU10 means that quality images can be collected with much lower levels of illumination; the CSU10 was capable of achieving the maximum signal-to-noise of an SPSC system at illumination levels that incur only at 1/15th of the rate of the photobleaching of the SPSC system. Although some of the relative efficiency of the CSU10 system may be attributed to the use of a CCD rather than a photomultiplier detector system, our analyses indicate that high-speed imaging with the SPSC system is limited by fluorescence saturation at the high levels of illumination frequently needed to collect images at high frame rates. The high speed, high efficiency and freedom from fluorescence saturation combine to make the CSU10 effective for extended imaging of living cells at rates capable of capturing the three-dimensional motion of endosomes moving up to several micrometres per second.  相似文献   

15.
The fluorescence photobleaching method has been widely used to study molecular transport in single living cells and other microsystems while confocal microscopy has opened new avenues to high-resolution, three-dimensional imaging. A new technique, scanning microphotolysis (Scamp), combines the potential of photobleaching, beam scanning and confocal imaging. A confocal scanning laser microscope was equipped with a sufficiently powerful laser and a novel device, the ‘Scamper’. This consisted essentially of a filter changer, an acousto-optical modulator (AOM) and a computer. The computer was programmed to activate the AOM during scanning according to a freely defined image mask. As a result almost any desired pattern could be bleached (‘written’) into fluorescent samples at high definition and then imaged (‘read’) at non-bleaching conditions, employing full confocal resolution. Furthermore, molecular transport could be followed by imaging the dissipation of bleach patterns. Experiments with living cells concerning dynamic processes in cytoskeletal filaments and the lateral mobility of membrane lipids suggest a wide range of potential biological applications. Thus, Scamp offers new possibilities for the optical manipulation and analysis of both technical and biological microsystems.  相似文献   

16.
激光扫描共聚焦显微镜技术的发展及应用   总被引:8,自引:1,他引:8  
激光扫描共聚焦显微术是先进的分子和细胞生物学研究技术。它在荧光显微镜成像的基础上加装激光扫描装置,结合数据化图像处理技术,采集组织和细胞内荧光标记图像。在亚细胞水平观察钙等离子水平的变化,并结合电生理等技术观察细胞生理活动与细胞形态及运动变化的相互关系。由于它的应用范围较广泛,已成为形态学、分子细胞生物学、神经科学和药理学等研究领域中很重要的研究技术。  相似文献   

17.
In this paper, we experimentally demonstrated a two-channel frequency division multiplexing confocal fluorescence microscopy system using a UV laser as the excitation source. In our two-channel frequency division multiplexing confocal fluorescence system, the incoming laser beam was divided into two beams and each beam was modulated with an individual carrier frequency. These two laser beams were then spatially combined with a small angle and focused into two diffraction-limited spots on the targeted cell (rat neural cell) surface to generate fluorescent signal. As a result, the fluorescent signals from two spots of the rat neural cell surface can be demodulated and distinguished during data processing. Furthermore, a quantitative analysis on the cross-talk among different frequencies was provided as well. The experimental results confirm that the two-channel frequency division multiplexing confocal fluorescence technology can not only maintain the high spatial resolution, but also realize the multiple points detection simultaneously with high temporal resolution (within millisecond level range), which benefits the dynamic studies of living biological cells.  相似文献   

18.
We report a preliminary investigation of spatial inhomogeneities in an InGaN epilayer using scanning confocal microscopy as the investigative tool. The Daresbury confocal microscope SYCLOPS provides simultaneous high quality reflection and fluorescence images of InGaN sample areas up to 500 μm square, even at room temperature. Sample cooling increases the brightness and quality of the fluorescence image, as expected. Spectral selection using interference filters permits identification of features close to sample edges resulting from the nitridation of indium droplets. The unexpected non-coincidence of fluorescence and reflection features below 10 μm in size is tentatively attributed to the differing absorption strengths of different crystallites.  相似文献   

19.
Limitations on optical sectioning in live-cell confocal microscopy   总被引:5,自引:0,他引:5  
Pawley JB 《Scanning》2002,24(5):241-246
In three-dimensional (3-D) live-cell microscopy, it has been common to treat cells as having a constant refractive index (RI). Although the variations in RI associated with the nucleus and other organelles were recognized from phase- and differential interference contrast (DIC) images, it was assumed that they were small and would not affect 3-D fluorescence images obtained using widefield/deconvolution, confocal of multiphoton imaging. This paper makes clear that this confidence was misplaced. Confocal images made using backscattered light (BSL) to image the flat, glass/water interfaces above and below living microscope specimens should reveal these structures as flat and featureless. That the image of the interface on the far side of the cells is neither flat nor featureless indicates that the "optical section" surface can be profoundly distorted by the RI irregularities associated with the presence of nuclei and other subcellar structures. This observation calls into question the reliability of images made using any of the current methods for performing 3-D light microscopy of living cells.  相似文献   

20.
The study of distribution and quantitation of a fluorescent probe in living epithelia with the aid of an inverted microscope requires that individual cells can be analysed without optical interference from adjacent cells. This report describes the application of fluorescence microscopy and fluorometry to a recently developed in vitro culture system of renal epithelial cells. Epithelial cells derived from the mammalian renal cortical collecting tubule (CT) and the thick ascending loop of Henle (TAL) are cultivated as continuous monolayers in serum-free, hormone-supplemented media. A specific mitochondrial marker (DASPMI) is added to the medium and incorporated into the cytoplasm. The microscopic image reveals that the mitochondrial fluorescence distribution differs between CT and TAL cultures. The fluorometric quantitation shows a normally distributed histogram of medium-range intensity in TAL cell cultures while CT cultures exhibit a two-peak pattern of mitochondrial fluorescence distribution among epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号