首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.  相似文献   

2.
INTRODUCTIONThe ejector system is a device which employs ahigh-velocity primary motive fluid to enirain and accelerate a slower moving secondary fluid. The resulting kinetic energy of the mixture is subsequently usedfor self-compression to a higher pressure, thus performing the function of a compressor. The ejectorsystem has lOng been applied to jet pumps, vacuumpumps, high-altitude simulators, V/STOLs, etc[lrv4],because of the major advantages of its structural simplicity and reliabili…  相似文献   

3.
INTRODUCTIONUnloosetheconvenhonalfluidmachineryinwhichusuallyhavesomerotatingormovingparts,theejectorisadevicewhichemploysahigh-velocityprimalmotivefluidtoentrainandaccelerateasecondalsuctionfluidwhichmovesslower.Theresulhngkinehcenergyofthefutureissubsequentlyusedforself-compressiontOahigherPressure,thusPerformingthefunchonofacompressor.TheejectorsystemhaslongbeenappliedtOjetpumps,vacuumPumps,high-altitUdesimulators,V/STOLs,etc['-'l;becauseofthemajoradvantagesofitsstrUcturalsimplicit…  相似文献   

4.
The present study addresses a variable ejector which can improve the ejector efficiency and control the re-circulation ratio under a fixed operating pressure ratio. The variable ejector is a facility to obtain specific recirculation ratio under a given operating pressure ratio by varying the ejector throat area ratio. The numerical simulations are carried out to provide an understanding of the flow characteristics inside the variable ejector. The sonic and supersonic nozzles are adopted as primary driving nozzles in the ejector system, and a movable cone cylinder, inserted into a conventional ejector-diffuser system, is used to change the ejector throat area ratio. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged Navier-Stokes equations. The results show that the variable ejector can control the recirculation ratio at a fixed operating pressure ratio.  相似文献   

5.
Introduction The research of flow structure in the entrance part of the mixing chamber of two-dimensional supersonic ejector[1,2] shows, how this structure depends both on stagnation pressure ratio of streams p01/p02[3] and on back pressure ratio pb/p02 [4]. It was found out that the structure of shock waves is not stable, but it oscillates less or more. For the high back pressure ratio a terminal shock wave is in the mixing chamber and due to this shock wave the mixing processes change quali…  相似文献   

6.
Supersonic ejectors involve very complex phenomena such as interaction between supersonic and subsonic flows, shock trains, instabilities, which strongly influences the performance of supersonic ejector. In this study, the static pressure distribution along the ejector wall and Mach number distribution along the axis are used to investigate the internal flow field of supersonic ejector. Results indicate that when the back pressure is much less than the critical back pressure, there are two series of shock trains, and the change of the back pressure will not affect the flow field before the effective area section, so the entrainment ratio would remain constant. The second shock train moves further upstream and is combined with the first shock train to form a single shock train as the back pressure rises. When the back pressure is greater than the critical back pressure, the position of the shock train, the static pressure at its upstream and the entrainment ratio, will be affected. The “effective area section” in the mixing tube is obtained. The effective area section position moves downstream with the increase of the primary flow pressure, while it moves upstream with the increase of the secondary flow pressure. The entrainment ratio shows inversely proportional relationship with the effective section position. Besides, the first shock train length increases with the increase of primary flow pressure or secondary flow pressure. The critical back pressure represents direct proportional relationship to the first shock train length.  相似文献   

7.
Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solidparticles accelerated through a high-speed gas flow in a converging-diverging nozzle.In this study,pseudo-shockwaves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique.Theschlieren photographs reveals the supersonic flow with shock train in the nozzle,Static pressure along the barrelwall is also measured.The location of the head of pseudo-shock wave and its pressure distribution along the noz-zle wall are analytically explained by using a formula of pseudo-shock wave.The analytical results show that thesupersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of nor-mal shock wave.  相似文献   

8.
Optimization Study of a Coanda Ejector   总被引:1,自引:0,他引:1  
The Coanda effect has long been employed in the aerospace applications to improve the performances of variousdevices.This effect is the ability of a flow to follow a curved contour without separation and has well been util-ized in ejectors where a high speed jet of fluid emerges from a nozzle in the ejector body, follows a curved sur-face and drags the secondary flow into the ejector.In Coanda ejectors,the secondary flow is dragged in the ejec-tor due to the primary flow momentum. The transfer of momentum from the primary flow to the secondary flowtakes place through turbulent mixing and viscous effects.The secondary flow is then dragged by turbulent shearforce of the ejector while being mixed with the primary flow by the persistence of a large turbulent intensitythroughout the ejector.The performance of a Coanda ejector is studied mainly based on how well it drags thesecondary flow and the amount of mixing between the two flows at the ejector exit.The aim of the present studyis to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector per-formance.The effect of various factors,such as,the pressure ratio, primary nozzle and ejector configurations onthe system performance has been evaluated based on a performance parameter defined elsewhere.The perform-ance of the Coanda ejector strongly depends on the primary nozzle configuration and the pressure ratio.The mix-ing layer growth plays a major role in optimizing the performance of the Coanda ejector as it decides the ratio ofsecondary mass flow rate to primary mass flow rate and the mixing length.  相似文献   

9.
The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow parameter development in the entrance part of the mixing chamber of the ejector. Numerical results are obtained by means of both the straight solution of shock waves in supersonic flow field using classical relations of parameters of shock waves and the Fluent 6 program. Results of numerical solutions are compared with experimental pictures of flow fields. Flow structure development in the mixing chamber is analysed in detail.  相似文献   

10.
This paper describes experimental and numerical works to investigate noise phenomenon in supersonic flow dis- charged from a convergent-divergent nozzle. The noise phenomenon of flow is generated by an emission of 'transonic tones'. The results obtained show that the frequency of a transonic tone, that differs from the frequency of a screech tone due to the shock-cell structures in a jet and originates in the shock wave in the nozzle, increases in proportion to the nozzle pressure ratio. The high-order transonic tone has the directivity in the direction of the flow. As for the transonic tone's frequency, the separated zone was calculated by using a simple flow model con- sidering the propagating perturbation. The results of the model corresponded to the results of this experiment well.  相似文献   

11.
The latest results of an ongoing coordinated experimental and computational program on the design and performance of a novel supersonic rotor-vane/pressure-exchange ejector for thermally driven ejector refrigeration systems are presented. For the supersonic rotor-vane/pressure-exchange ejector, careful management of the entropy rise through the oblique shocks and boundary layers is required for obtaining an advance in ejector performance. Since the invention of this new ejector is quite recent, understanding its aerodynamics, with the consequent optimization of performance, is in the formative stage. This paper shows how the supersonic aerodynamics is managed to provide the desirable flow induction characteristics through computational study and, in parallel, experimental results including flow visualization showing actual behavior with different-shaped rotor vanes. The importance of the existence of the tail part with a long expansion ramp, the sharp leading edge such as knife-edge, the proper height of leading edges, for the overall shape of rotor vane, were observed. Also the larger spin-angle rotor vane produces better flow induction and mixing between primary flow and secondary flow.  相似文献   

12.
The effect of the secondary flow on the starting pressure of a second-throat supersonic ejector has been investigated by adapting the height of the secondary flow inlet. The obtained results show that an optimum value of the secondary inlet height exists, and the starting pressure of the ejector becomes a minimum at that condition. Based on the results of the pressure measurements, a qualitative analysis has been made to clarify the flow behavior and the physical meaning of the performance diagram. It appears that the choking phenomenon of the secondary flow plays an important role in the starting process of the ejector. When the secondary inlet height is relatively small, the choked secondary flow and the supersonic primary flow could be employed to protect the static pressure in the suction chamber from being disturbed by the back pressure effect at a certain primary stagnation pressure, which is lower than the starting pressure for the case of the zero-secondary flow. However, as the secondary inlet height increases and exceeds a critical value, the static pressure in the suction chamber rapidly increases, and the starting pressure of the ejector increases accordingly.  相似文献   

13.
Improvement of fuel utilization is an important issue for proton exchange membrane fuel cell (PEMFC) system. As a promising anode recirculation method, ejector has attracted great attention because it does not require additional power consumption. However, some transient processes such as the suck, diffusion, and mix of fluids are still not thoroughly revealed, which significantly influence ejector performances. In this study, a dynamic three-dimensional (3D) multicomponent ejector model for a 130-kW PEMFC system is developed. The model is validated against experimental data, including the entrainment ratio and mass flow rates. The effects of operating conditions (eg, pressure, water vapor, and nitrogen mass fraction) are investigated. The results show that the fuel supply can be controlled by the primary flow pressure. When the pressure difference between the primary and secondary flow is less than 10 kPa, the secondary flow cannot be sucked into the ejector. The transient response of ejector during stack power variations can be classified into two periods: the primary flow impact period and the mixed flow impact period. Under normal fuel cell system operating conditions, when the inlet relative humidity of the secondary flow is higher than 85%, the water vapor condensation is possible to happen at the ejector outlet region, leading to fuel supply instability. Besides, the hydrogen entrainment ratio decreases with the increase of nitrogen mass fraction. The effects of geometric parameters (eg, nozzle convergence angle, secondary flow tube diameter, mixing tube length, and diffuser angle) on ejector performances are also studied. It is found that the relatively short tube leads to pressure fluctuations in the vacuum region. Increasing the tube length is beneficial to creating a stable vacuum region. However, excessive tube length can increase the friction loss. Increasing the secondary flow inlet tube diameter is beneficial to the entrainment ratio. However, further enlarging the diameter contributes negligibly to the increase of entrainment ratio once the secondary flow mass rate depends on pressure.  相似文献   

14.
Experimental data on the phenomenon of nozzle choking at diffusion combustion of a high-speed hydrogen microjet at its ignition close to the nozzle are presented. As is found, such a phenomenon is due to the nozzle heating by the «bottleneck flame region» which is generated at the origin of microjet. This flow region persists up to transonic velocities of the microjet preventing from cooling of the nozzle and the transition to supersonic speed. In the case of hydrogen ignition far from the nozzle exit in supersonic conditions, the «bottleneck flame region» is suppressed, the flame becomes detached from the nozzle which is no longer heated so that the supersonic range is attained. The subsonic combustion of hydrogen microjet is stabilized by the «bottleneck flame region» while the supersonic one becomes more stable at the generation of shock cells. The results of the present study provide new details on the combustion of hydrogen microjets and could by useful for the operation of different burners.  相似文献   

15.
A detailed mathematical model describing the performance of low-pressure low-temperature solar steam-jet cooling cycles for comfort air conditioning is presented in this paper. The model is based on the analysis of the cycle performance together with the supersonic flow conditions in the convergent divergent nozzle and the preceding supersonic and subsonic diffusers. The sets of simultaneous equations resulting from the model together with a subroutine providing numerical values of the thermodynamic properties of steam formulated a computer simulation program. The simulation program analyzes the performance of the solar steam-jet cooling system under different design and operating conditions. A set of design charts for the solar steam-jet cooling cycle and for the selection of the ejector dimensions were constructed. Finally, conclusions on the design considerations and limitations as well as the off design performance are discussed.  相似文献   

16.
The steady two-dimensional Navier–Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent–divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle.  相似文献   

17.
When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is under-expanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with non-equilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics are not known satisfactorily. In the present study, the effect of the non-equilibrium condensation on the under-expanded air jet impinging on a vertical flat plate is investigated numerically in the case with non-equilibrium condensation, frequency of oscillation for the flow field becomes larger than that without the non-equilibrium condensation, and amplitudes of static pressure become small compared with those of dry air. Furthermore, the numerical results are compared with experimental ones.  相似文献   

18.
A comprehensive entrainment performance evaluation system of the ejector was built including four indexes. An ejector's Computational Fluid Dynamics (CFD) model was established, and the sensitivity analysis of the entrainment performance to four key geometry parameters of the ejector, namely, the nozzle diameter (Dn), the primary nozzle exit position (NXP), the mixing tube diameter (Dm), and the secondary flow inlet diameter (Ds) was performed. Based on the quantified boundary conditions obtained by the Simulink simulation, the ejector structure was optimized with a new method. It is found that the total recirculation ratio increases but the hydrogen recirculation ratio decreases with the increase of the relative humidity of the secondary flow. The hydrogen recirculation ratio shows a unidirectional increase tendency with the increase of Ds and the decrease of Dn and NXP. The hydrogen recirculation ratio increases firstly and then decreases with the increase of Dm. High hydrogen recirculation ratio with low primary hydrogen flow rate, corresponding to low current operation point of fuel cell system and low sensitiveness to the changing relative humidity are usually incompatible. The hydrogen recirculation ratio with low primary flow rate degrades significantly when Dn increases and Dm is larger than a certain value. The ejector with smaller Ds shows lower sensitiveness to the changes of relative humidity, while the hydrogen recirculation ratio with low primary hydrogen flow rate is not affected badly. When matching with a specific system, it is necessary to balance the ejection performance at low current density operating points and the sensitiveness to the changes of relative humidity in combination with the anodic gas state at each operating point, so as to find the optimal structural parameters. The optimization sequence of structural parameters should follow: Dn is selected firstly, then NXP and Ds are optimized, and finally Dm is chosen.  相似文献   

19.
The paper presents the experimental results of a novel ejector refrigerator that was designed to be suitable for an air‐conditioning application using vacuum tube solar collectors for vapour generation. The primary flow of the ejector is controlled using a spindle in order to provide fine tuning for ejector operation as heat input changes with solar radiation. Water, the most environmentally friendly substance is used as the working fluid. The performance of the ejector was tested for a range of controlled primary flows, boiler temperatures, condensation capacities using different primary nozzles with different lengths. The effect of the operating conditions and nozzle length on the performance of the ejector was analyzed. It was found that in the tested boiler temperature range of 84–96°C the maximum cooling capacity (4.01 kW) of the ejector with short nozzle is much higher than that of the ejector with long nozzle (2.9 kW) on the spindle position of 21 mm. However, the ejector with long nozzle has increased COP when the boiler temperature is below 88°C and has higher critical back pressure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Ejectors are devices that are based on the principle of momentum transfer. A primary fluid passes through a nozzle that is usually of converging–diverging cross-section so that the flow reaches supersonic velocity at the exit. Consequently, a low-pressure region is created just outside the nozzle exit. This pressure gradient draws out the secondary fluid, into the ejector through the annular space—a phenomenon known as entrainment. This paper attempts to design and optimize an ejector with 1,1-dichloro-1-fluoroethane as the working fluid. The governing equations that accurately predict the behavior of the working fluid, are solved using the finite volume method after the discretization of the flow domain, using ANSYS Fluent. A database is created over 1008 similar computational fluid dynamics simulations by recording the input parameter values and the corresponding output parameter values. It is then used to define a function that can precisely predict the output for an unknown set of input parameters. This is achieved through the implementation of artificial neural networks—a surrogate modeling technique. The accuracy of the model is determined from the coefficient of correlation. The objective function thus obtained is optimized with the help of a genetic algorithm (GA)—a nature-inspired optimization technique. The optimal design of the ejector for a set of operating conditions is obtained as the output of the GA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号