共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructural analysis and the creep failure mechanism of dissimilar weldment between ASTM A213 T92 (9Cr1.5W0.5MoVNbTi) and T22 (2.25Cr1Mo) heat-resistant steels are reported. The low-Cr part that has high carbon activity shows a depletion of C during postweld heat treatment. In particular, the soft carbon-depleted zone (CDZ) with the lowest hardness is surrounded by strong weld metal (WM) and the T22 heat-affected zone (HAZ). Load-displacement curves obtained by nanoindentation experiments are used to extract true stress–strain curves of the WM, the CDZ, and the T22 HAZ by using finite element methods (FEMs). Because of the mechanical properties of each region, the soft CDZ confined between harder regions is exposed to multiaxial stress. Therefore, creep voids actively form and coalesce in this CDZ and lead to macroscopic brittle fracture. 相似文献
3.
The effect of mechanical activation of heat-resistant steel 55Kh20N4AG9 powders on the structure and properties of high-density material obtained by dynamic hot pressing with extrusion elements was investigated. Mechanical activation improves the chemical homogeneity of the highly alloyed material, decreases the particle size of the strengthening carbonitride phase, promotes its interaction with dislocation tangles and increases their thermal stability. Mechanical activation of powders with intermediate anneals promotes the accumulation of thermally stable defects in the crystal structure and leads to the accelerated formation of a cellular fragmented structure in the austenite, characterized by a high dislocation density in block walls. The developed cellular fragmented substructure is retained after dynamic hot pressing and subsequent heat treatment, and elevates the mechanical properties of the high-density heat-resistant powder metallurgy steels. 相似文献
4.
Creep deformation is simulated for 9 pct Cr steels by using the Norton equation with the addition of back stresses from dislocations and precipitates. The composite model is used to represent the heterogeneous dislocation structure found in 9 to 12 pct Cr steels. Dislocation evolution is modeled by taking capturing and annihilation of free dislocations into account. Recovery of immobile dislocations is derived from the ability of dislocation climb. In spite of the fact that the initial dislocation density is high and is reduced during creep, primary creep is successfully modeled for a P92 steel. Subgrain growth is evaluated using a model by Sandström (1977). The long time subgrain size corresponds well to a frequently used empirical relation, with subgrain size inversely proportional to the applied stress. 相似文献
5.
Friction stir welding of thin aluminum sheets represents a potential goal for aircraft and automotive industries because of the advantages of using this new technological process. In the current work, the microstructural evolution and mechanical behavior of 6082T6-6082T6, 2024T3-2024T3, and 6082T6-2024T3 thin friction-stir-welded joints were investigated. Uniaxial tensile testing at room temperature, 443 K, 473 K, and 503 K (170 °C, 200 °C, and 230 °C) was used to determine the extent to which these ultra-thin joints can be used and deformed. The tensile stress–strain curves showed a decrease of the flow stress with increasing temperature and decreasing strain rate. The ductility of 6082T6-6082T6 joints generally improved when deformed at warm temperatures. It was almost constant for the 6082T6-2024T3 and reached the higher value in the 2024T3-2024T3 when deformed at 443 K and 473 K (170 °C and 200 °C) when compared with the room temperature value. Tensile specimens fractured in the middle of the weld zone in a ductile mode. The precipitation and growth of S’ type phases strengthens 2024T3-2024T3 joints during deformation. In the 6082T6-6082T6, β″ precipitates show some increase in size but give a lower contribution to strength. At 503 K (230 °C), recovery mechanisms (dislocation reorganization inside the deformed grains) are initiated but the temperature was not enough high to produce a homogeneous subgrain structure. 相似文献
6.
研究了1Cr12Ni3Mo2VN钢1010℃1 h油冷,2次580~620℃1 h回火空冷后的力学性能和组织。试验结果表明,在620℃回火拉伸试样中,回火马氏体板条界析出大量聚集的粗化的块状M_(23)C_6碳化物,试样塑性变形以孪晶方式进行,塑性较低;580℃回火拉伸试样塑性变形以滑移方式进行,塑性较好。该钢最佳回火工艺为两次580℃1 h空冷。 相似文献
7.
研究了1040℃1h油冷、炉冷(5℃/min)、1℃/min、0.5℃/min冷却后耐热钢1Cr12Ni3Mo2VN的组织和该钢1040℃1h不同冷却速度淬火+565℃2h空冷后的力学性能。试验结果表明,该钢4种冷却速度淬火均可得到马氏体组织,但油冷+回火的A_(KV2)值为156.5 J,而5~0.5℃/min冷却+回火时为40.5~16.5 J。残余奥氏体发生热失稳分解是导致试验钢淬火缓冷后冲击韧性显著下降的主要原因;在淬火缓冷过程中720~820℃这一温度段,由于原奥氏体晶界上碳化物的大量析出,使残余奥氏体中合金元素和碳含量的显著减少,造成淬火组织中的残余奥氏体稳定性大幅度下降。 相似文献
8.
In this article, a detailed study was conducted to evaluate the microstructural evolution and mechanical properties of microalloyed
steels processed by thermomechanical schedules incorporating cool deformation. Cool deformation was incorporated into a full
scale simulation of hot rolling, and the effect of prior austenite conditioning on the cool deformability of microalloyed
steels was investigated. As well, the effect of varying cooling rate, from the end of the finishing stage to the cool deformation
temperature, 673 K (400 °C), on mechanical properties and microstructural evolution was studied. Transmission electron microscopy
(TEM) analysis, in particular for Nb containing steels, was also conducted for the precipitation evaluation. Results show
that cool deformation greatly improves the strength of microalloyed steels. Of the several mechanisms identified, such as
work hardening, precipitation, grain refinement, and strain-induced transformation (SIT) of retained austenite, SIT was proposed,
for the first time in microalloyed steels, to be a significant factor for strengthening due to the deformation in ferrite.
Results also show that the effect of precipitation in ferrite for the Nb bearing steels is greatly overshadowed by SIT at
room temperature. 相似文献
9.
The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of
high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys.
In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni
ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD
technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams
that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental
alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The
expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible
phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant
microstructure as a function of composition. The results of this work provide a working guideline for future base metal and
filler metal development of this class of materials.
An erratum to this article can be found at 相似文献
14.
The present study concerns the development of two low carbon microalloyed ultra high strength steels on a pilot scale. This recent endeavour has been made towards the reduction of weight by achieving high strength to weight ratio together with improved weldability for the various prospective high performance defence applications such as explosive ammunition, gun barrel, missile skins, light-weight military bridges etc. These steels were thermomechanically processed and finished at different finish rolling temperatures followed by water quenching. Variation in microstructure and mechanically properties at different finished rolling temperatures was studied. The experimentally determined continuous cooling transformation diagrams have revealed that adequate hardenability is achievable in these steels usually at a cooling rate >5 °C/s. Lath martensite along with the microalloy (Ti, Nb) CN precipitate particles are the characteristic microstructural feature of the investigated steels. The high strength value obtained in the present steels is due to the accumulated contribution of fine grained pan-caked austenite, highly dislocated lath martensite along with the presence of tiny precipitates of microalloy carbide/carbonitride and Cu rich precipitates. The good combination of strength (1,364–1,538 MPa) and ductility (11–16 %) has been achieved for the selected range of finish rolling temperature. The Charpy impact toughness values (30–80 J) reveal approximately consistent fall with the lowering of testing temperature. 相似文献
15.
Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates, which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties. 相似文献
17.
NUCu-140 is a copper-precipitation-strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently used materials, the weldability of this material must be determined under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. Microhardness traverses and tensile testing using digital image correlation show local softening in the heat-affected zone (HAZ). Microstructural characterization using light optical microscopy (LOM) revealed very few differences in the softened regions compared with the base metal. Local-electrode atom-probe (LEAP) tomography demonstrates that local softening occurs as a result of dissolution of the Cu-rich precipitates. MatCalc kinetic simulations (Vienna, Austria) were combined with welding heat-flow calculations to model the precipitate evolution within the HAZ. Reasonably good agreement was obtained between the measured and calculated precipitate radii, number density, and volume fraction of the Cu-rich precipitates in the weld. These results were used with a precipitate-strengthening model to understand strength variations within the HAZ. 相似文献
19.
Metallurgical and Materials Transactions A - This research is performed to decrease reheat cracking susceptibility in the T/P23 heat-resistant steels (2.25Cr1.5WVNbTi), in other words, to reduce... 相似文献
20.
Low carbon Nb-Mo microalloyed steels show interesting synergies between the “micro”-alloying elements when high strength–high toughness properties are required. Strain accumulation in austenite is enhanced, and therefore grain sizes are refined in the final microstructures. The presence of Mo facilitates the presence of non-polygonal phases, and this constituent modification induces an increment in strength through a substructure formation as well as through an increase in the dislocation density. Regarding fine precipitation and its strengthening effect, the mean size of NbC is reduced in the presence of Mo and their fraction increased, thus enhancing their contribution to yield strength. In this paper, a detailed characterization of the microstructural features of a series of microalloyed steels is described using the electron-backscattered diffraction technique. Mean crystallographic unit sizes, a grain boundary misorientation analysis, and dislocation density measurements are performed. Transmission electron microscopy is carried out to analyze the chemical composition of the precipitates and to estimate their volume fraction. In this first part, the contribution of different strengthening mechanisms to yield strength is evaluated and the calculated value is compared to tensile test results for different coiling temperatures and compositions. 相似文献
|