共查询到19条相似文献,搜索用时 78 毫秒
1.
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性. 相似文献
2.
3.
CURE算法是一种凝聚的层次聚类算法,它首先提出了使用多代表点描述簇的思想。本文通过对已有的基于多代表点的层次聚类算法特点的分析,提出了一种新的基于多代表点的层次聚类算法WRPC。它使用了基于影响因子的簇代表点选取机制和基于k-近邻方法的小簇合并机制,可以发现形状、尺寸更为复杂的簇。实验结果表明,该算法在保证执行效率的情况下取得了更好的聚类效果。 相似文献
4.
5.
一种基于密度的快速聚类算法 总被引:52,自引:0,他引:52
聚类是数据挖掘领域中的一个重要研究方向,聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用,迄今为止人们提出了许多用于大规模数据库的聚类算法。基于密度的聚类算法DBSCAN就是一个典型代表。以DBSCAN为基础,提出了一种基于密度的快速聚类算法。新算法以核心对象领域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I/O开销,实现快速聚类,对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN算法。 相似文献
6.
CORE算法是一种凝聚的层次聚类算法,它首先提出了使用多代表点描述簇的思想。通过深入分析现有的基干多代表点的层次聚类算法。本文提出了一种新的改进机制,使用了基干影响因子的族代表点选取机制可以发现形状、尺寸更为复杂的族。实验结果表明,该改进取得了更好的聚类结果。 相似文献
7.
密度峰值聚类(density peaks clustering, DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而, DPC仍存在些许不足:一方面, DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面, DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors, KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果. 相似文献
8.
一种利用代表点的有效聚类算法设计与实现 总被引:1,自引:0,他引:1
本文针对传统的聚类算法倾向于识别大小类似的球形聚类簇,且对离群数据较为敏感等问题,利用聚类簇代表点选取的方法,设计了一种有效的聚类算法.该方法首先从聚类簇中选取充分分散的若干数据点,然后将它们向聚类簇的重心收缩,依此得到的多个数据点作为聚类簇的代表.通过选取多个代表点,本算法可以捕捉到不同形状的聚类簇的几何特征,且受离群数据的影响较小.实验结果表明,该算法处理复杂数据是有效的. 相似文献
9.
一种改进的基于密度的聚类算法 总被引:10,自引:0,他引:10
基于密度的聚类是聚类算法中的一种,其主要优点是可以发现任意形状的簇,对噪声不敏感。而现有的该类算法对于空间数据分布不均匀的情况聚类效果不佳。鉴于此,文中提出一种改进的基于密度的聚类算法,保持了基于密度的聚类算法的优点,并且可以有效地处理分布不均的数据集,减少了时间复杂度,适用于对大规模数据库的挖掘与分析。 相似文献
10.
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算法,其创新点在于,通过参考点来准确地反映数据的空间几何特征,然后基于参考点对数据进行分析处理.CURD算法保持了基于密度的聚类算法的上述优点,而且CURD算法具有近似线性的时间复杂性,因此CURD算法适合对大规模数据的挖掘.理论分析和实验结果也证明了CURD算法具有处理任意形状的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的基于R*-树的DBSCAN算法. 相似文献
11.
密度聚类算法因具有对噪声鲁棒、能够发现任意形状的类等优点,得到了广泛的应用。然而,在实际应用中,这种算法面临着由于数据集中不同类的密度分布不均,且类与类之间的边界难以区分等导致聚类效果较差的问题。为解决以上问题,提出一种基于边界点检测的变密度聚类算法(VDCBD)。首先,基于给出的相对密度度量方法识别变密度类之间的边界点,以此增强相邻类的可分性;其次,对非边界区域的点进行聚类以找到数据集的核心类结构;接着,依据高密度近邻分配原则将检测到的边界点分配到相应的核心类结构中;最后,基于类结构信息识别数据集中的噪声点。在人造数据集和UCI数据集上与K-means、基于密度的噪声应用空间聚类(DBSCAN)算法、密度峰值聚类算法(DPCA)、有效识别密度主干的聚类(CLUB)算法、边界剥离聚类(BP)算法进行了比较分析。实验结果表明,所提算法可以有效解决类分布密度不均、边界难以区分的问题,并在调整兰德指数(ARI)、标准化互信息(NMI)、F度量(FM)、准确度(ACC)评价指标上优于已有算法;在运行效率分析中,当数据规模较大时,VDCBD运行效率高于DPCA、CLUB和BP算法。 相似文献
12.
一种新型的基于密度和栅格的聚类算法* 总被引:1,自引:1,他引:1
针对网格和密度方法的聚类算法存在效率和质量问题,给出了密度和栅格相结合的聚类挖掘算法,即基于密度和栅格的聚类算法DGCA(density and grid based clustering algorithm)。该算法首先将数据空间划分为栅格单元,然后把数据存储到栅格单元中,利用DBSCAN密度聚类算法进行聚类挖掘;最后进行聚类合并和噪声点消除,并将局部聚类结果映射到全局聚类结果。实验通过人工数据样本集对该聚类算法进行理论上验证,表明了该算法在时间效率和聚类质量两方面都得到了提高。 相似文献
13.
密度峰值聚类(DP)算法是一种新的基于密度的聚类算法,当它处理的单个聚类包含多个密度峰值时,会将每个不同密度峰值视为潜在聚类中心,以致难以在数据集中确定正确数量聚类,为此,提出一种混合的密度峰值聚类算法C-DP。首先,以密度峰值点为初始聚类中心将数据集划分为子簇;然后,借鉴代表点层次聚类算法(CURE),从子簇中选取分散的代表点,将拥有最小距离的代表点对的类进行合并,引入参数收缩因子以控制类的形状。仿真实验结果表明,在4个合成数据集上C-DP算法比DP算法聚类效果更好;在真实数据集上的Rand Index指标对比表明,在数据集S1上,C-DP算法比DP算法性能提高了2.32%,在数据集4k2_far上,C-DP算法比DP算法性能提高了1.13%。由此可见,C-DP算法在单个类簇中包含多密度峰值的数据集中能提高聚类的准确性。 相似文献
14.
密度峰值聚类算法是一种新颖的密度聚类算法,但是原算法仅仅考虑了数据的全局结构,在对分布不均匀的数据集进行聚类时效果不理想,并且原算法仅仅依据决策图上各点的分布情况来选取聚类中心,缺乏可靠的选取标准。针对上述问题,提出了一种基于加权K近邻的改进密度峰值聚类算法,将最近邻算法的思想引入密度峰值聚类算法,重新定义并计算了各数据点的局部密度,并通过权值斜率变化趋势来判别聚类中心临界点。通过在人工数据集上与UCI真实数据集上的实验,将该改进算法与原密度峰值聚类、K-means及DBSCAN算法进行了对比,证明了改进算法能够在密度不均匀数据集上有效完成聚类,能够发现任意形状簇,且在三个聚类性能指标上普遍高于另外三种算法。 相似文献
15.
在分析常用聚类算法的特点和适应性基础上提出一种基于密度与划分方法的聚类算法。该算法根据数据对象密度分布状态来自动确定聚类簇密度吸引中心点和聚类簇的初始划分;然后利用划分的方法,根据密度可达定义来寻找密度可达数据对象簇,从而完成数据对象簇的最终聚类。实验证明该算法能够很好地处理具有任意形状和大小的簇,能够有效地屏蔽噪声和离群点的影响和发现孤立点;同时也减小了输入参数对领域知识的依赖性。 相似文献
16.
CURE算法是针对大规模数据聚类算法的典型代表。提出了一种新的算法K-CURE,该方法基于划分思想对CURE算法作了改进,同时给出了在聚类中剔除孤立点的时机选择方法。测试表明,改进后的算法效率明显高于原算法,且聚类效果良好。 相似文献
17.
基于密度的K-means聚类中心选取的优化算法 总被引:2,自引:0,他引:2
针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获得最优聚类。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。 相似文献
18.
针对现有入侵检测算法中普遍存在的对输入顺序敏感的问题,提出了将网格和密度相结合的聚类算法应用到入侵检测中。该算法在CLIQUE基础上进行了改进,将非密集单元向密集单元移动,克服了CLIQUE算法聚类结果精确性不高的缺点。该算法结合了网格聚类的低时空复杂度和密度聚类的良好抗噪性的特点。仿真实验中采用了KDD-CUP99的测试数据集,实验结果证实了该算法的有效性和可行性。 相似文献