首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanofiber (CNF)-dispersed B4C composites have been synthesized and consolidated directly from mixtures of elemental raw powders by pulsed electric current pressure sintering (1800°C/10 min/30 MPa). A 15 vol% CNF/B4C composite with ∼99% of dense homogeneous microstructures (∼0.40 μm grains) revealed excellent mechanical properties at room temperature and high temperatures: a high bending strength (σb) of ∼710 MPa, a Vickers hardness ( H v) of ∼36 GPa, a fracture toughness ( K I C ) of ∼7.9 MPa m1/2, and high-temperature σb of 590 MPa at 1600°C in N2. Interfaces between the CNF and the B4C matrix were investigated using high-resolution transmission electron microscopy, EDS, and electron energy-loss spectroscopy.  相似文献   

2.
Strength measurements and fractography were used to investigate the failure of alumina-glass dental composites containing 75 vol% alumina and 25 vol% glass. Alumina compacts were prepared by slip casting and sintering at 1100°C for 2 h. Dense composites were made by infiltrating partially sintered alumina with glass at 1150°C for 8 h. Young's modulus and the hardness of the composites were 270 GPa and 12 GPa, respectively. The mean strength (460 MPa) and fracture toughness (4.0 MPa·m1/2) of the composites were insensitive to the glass thermal expansion coefficient (αglass= 5.9 × 10−6 to 7.8 × 10−6°C−1). Typical flaws were pores and cracklike voids formed by poor particle packing and differential sintering near agglomerates of alumina in the composite. Crack deflection and crack bridging were observed in indentation cracks. Fracture toughness was single-valued because the alumina particle size was small (∼3 μm). Alumina-glass composites are promising new ceramics for dental crown and bridge applications, because their strength and fracture toughness are ∼2 times greater than those of current dental ceramics.  相似文献   

3.
Hafnium diboride (HfB2)- and hafnium carbide (HfC)-based materials containing MoSi2 as sintering aid in the volumetric range 1%–9% were densified by spark plasma sintering at temperatures between 1750° and 1950°C. Fully dense samples were obtained with an initial MoSi2 content of 3 and 9 vol% at 1750°–1800°C. When the doping level was reduced, it was necessary to raise the sintering temperature in order to obtain samples with densities higher than 97%. Undoped powders had to be sintered at 2100°–2200°C. For doped materials, fine microstructures were obtained when the thermal treatment was lower than 1850°C. Silicon carbide formation was observed in both carbide- and boride-based materials. Nanoindentation hardness values were in the range of 25–28 GPa and were independent of the starting composition. The nanoindentation Young's modulus and the fracture toughness of the HfB2-based materials were higher than those of the HfC-based materials. The flexural strength of the HfB2-based material with 9 vol% of MoSi2 was higher at 1500°C than at room temperature.  相似文献   

4.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

5.
B4C/A1 offers a family of engineering materials in which a range of properties can be developed by postdensiflcation heat treatment. In applications where hardness and high modulus are required, heat treatment above 600°C provides a multiphase ceramic material containing only a small amount of residual metal. Heat treatment between 600° and 700°C produces mainly A1B2; 700° and 900°C results in a mixture of A1B2 and A14BC; 900° and 980°C produces primarily A14BC; and 1000° to 1050°C results in A1B24C4 with small amounts of A14C3 if the heating does not exceed 5 h. Deleterious A14C3 is avoided by processing below 1000°C. All of these phases tend to form large clusters of grains and result in lower strength regardless of which phase forms. Toughness is also reduced; the least determinal phase is A1B2. The highest hardness (88 Rockwell A) and Young's modulus (310 GPa) are obtained in Al4BC-rich samples. AlB2-containing samples exhibit lower hardness and Young's modulus but higher fracture toughness. While the modulus, Poisson's ratio, and hardness of multiphase B4C/A1 composites containing 5–10 vol% free metal are comparable to ceramics, the unique advantage of this family of materials is low density (>2.7 g/cm3) and higher than 7 MPa-m1/2 fracture toughness.  相似文献   

6.
High-Density Pressureless-Sintered HfC-Based Composites   总被引:1,自引:0,他引:1  
Hafnium carbide (HfC)-(5, 10, and 20 vol%) MoSi2 ceramics were pressureless sintered at 1950°C in an argon flux. The materials had nearly full density (96%–98%), with mean grain sizes in the range of 3–4 μm. Depending on the MoSi2 amount (5–20 vol%), the mechanical properties were in the following ranges: hardness 16–15 GPa, Young's modulus 434–385 GPa, fracture toughness 3.6–3.4 MPa·m1/2, and room-temperature 4-point flexural strength 465–383 MPa.  相似文献   

7.
Zirconium diboride (ZrB2) reinforced by nano-SiC whiskers has been prepared by spark plasma sintering (SPS). Of most interest is the densification of ZrB2–SiCw composites accomplished by SPS at a temperature as low as 1550°C. The relative density of ZrB2–SiCw composites could reach to 97% with an average grain size of 2–3 μm. Both flexural strength and fracture toughness of the composites were improved with increasing amount of SiCw. Flexural strengths ranged from 416 MPa for monolithic ZrB2 to over 545 MPa for ZrB2–15 vol% SiCw composites. Similarly, fracture toughness also increased from 5.46 MPa·m1/2 to more than 6.81 MPa·m1/2 in the same composition range. The relative density of ZrB2–SiCw composites could be further improved to near 100% by adding some sintering aids such as AlN and Si3N4; however, the effects of different sintering additives on the mechanical properties of the composites were different.  相似文献   

8.
Ceria-doped tetragonal zirconia (Ce-TZP)/alumina (Al2O3) composites were fabricated by sintering at 1450° to 1600°C in air, followed by hot isostatic pressing (postsintering hot isostatic pressing) at 1450°C and 100 MPa in an 80 vol% Ar–20 vol% O2 gas atmosphere. Dispersion of Al2O3 particles into Ce-TZP was useful in increasing the relative density and suppressing the grain growth of Ce-TZP before hot isostatic pressing, but improvement of the fracture strength and fracture toughness was limited. Postsintering hot isostatic pressing was useful to densify Ce-TZP/Al2O3 composites without grain growth and to improve the fracture strength and thermal shock resistance.  相似文献   

9.
Processing Temperature Effects on Molybdenum Disilicide   总被引:1,自引:0,他引:1  
A series of MoSi2 compacts were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500° to 1800°C, MoSi2 had a constant 67% transgranular fracture and linearly increasing grain size from 14 to 21 μm. Above 1800°C, the fracture percentage increased rapidly to 97% transgranular at 1920°C (32-μm grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi2 processed at 1600°C had the highest fracture toughness and hardness values of 3.6 MPa.m1/2 and 9.9 GPa, respectively. The effects of SiO2 formation from oxygen impurities in the MoSi2 starting powders and MoSi2–Mo5Si3 eutectic liquid formation were studied.  相似文献   

10.
YPSZ/Al2O3-platelet composites were fabricated by conventional and tape-casting techniques followed by sintering and HIPing. The room-temperature fracture toughness increased, from 4.9 MPa·m1/2 for YPSZ, to 7.9 MPa·m1/2 (by the ISB method) for 25 mol% Al2O3 platelets with aspect ratio = 12. The room-temperature fiexural strength decreased 21% and 30% (from 935 MPa for YPSZ) for platelet contents of 25 vol% and 40 vol%, respectively. Al2O3 platelets improved the high-temperature strength (by 110% over YPSZ with 25 vol% platelets at 800°C and by 40% with 40 vol% platelets at 1300°C) and fracture toughness (by 90% at 800°C and 61% at 1300°C with 40 vol% platelets). An amorphous phase at the Al2O3-platelet/YPSZ interface limited mechanical property improvement at 1300°C. The influence of platelet alignment was examined by tape casting and laminating the composites. Platelet alignment improved the sintered density by >1% d th , high-temperature strength by 11% at 800°C and 16% at 1300°C, and fracture toughness by 33% at 1300°C, over random platelet orientation.  相似文献   

11.
This paper examined the room-temperature mechanical properties of a mixed-conducting perovskite La1– x Sr x Co0.2Fe0.8O3 ( x = 0.2–0.8). Powders were made by the combustion synthesis technique and sintered at 1250°C in air. Sintered density, crystal phase, and grain size were characterized. Young's and shear moduli, microhardness, indentation fracture toughness, and biaxial flexure strength were determined. The Young's and shear moduli slightly increased with increasing strontium content. Young's modulus of 151–188 GPa and shear modulus of 57–75 GPa were measured. Biaxial flexure strength of ∼160 MPa was measured for lower strontium content batches. Strength greatly decreased to ∼40 MPa at higher strontium concentrations ( x = 0.6–0.8) because of the formation of extensive cracking. Indentation toughness showed a higher value (∼1.5 MPa·m1/2) for low strontium ( x = 0.2) content and a lower value (∼1.1 MPa·m1/2) for the other batches ( x = 0.4–0.8). Materials with fine and coarse grain size were also tested at various indent loads and showed no dependence of toughness on crack size. In addition, fractography was used to characterize the critical flaw and fracture mode.  相似文献   

12.
In order to evaluate the crystallization tendency of glasses, the ratio of the crystallization temperature to the liquidus temperature ( T c/ T L) was obtained by DTA measurement for the Na2O–B2O3 and Na2O–B2O3–Al2O3 systems. The critical cooling rate for glass formation ( Q *) was also measured. The measurements were performed in the composition range of (100 − x )Na2O–( x )B2O3, ( x = 25–35 and 60–100 mol%), and (100 − y )0.5Na2O·0.5B2O3−( y )Al2O3, ( y = 6–34 mol%). The relationship between T c/ T L and Q * was discussed. A linear relationship between T c/ T L and log Q * for these systems was found. Furthermore, the relationship between T c/ T L and Q * was verified by computer simulation based on the crystallization kinetics of glass or supercooled liquid.  相似文献   

13.
α/β-Si3N4 composites with various α/β phase ratios were prepared by hot pressing at 1600°–1650°C with MgSiN2 as sintering additives. An excellent combination of mechanical properties (Vickers indentation hardness of 23.1 GPa, fracture strength of about 1000MPa, and toughness of 6.3 MPa·m1/2) could be obtained. Compared with conventional Si3N4-based ceramics, this new material has obvious advantages. It is as hard as typical in-situ-reinforced α-Sialon, but much stronger than the latter (700 MPa). It has comparable fracture strength and toughness, but is much harder than β-Si3N4 ceramics (16 GPa). The microstructures and mechanical properties can be tailored by choosing the additive and controlling the heating schedule.  相似文献   

14.
Pressureless Sintering of Boron Carbide   总被引:4,自引:0,他引:4  
B4C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4C–B4C contact between particles permitted via volatilization of B2O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2O3 to form B4C and CO gas, thereby extracting the B2O3 coatings, permitting sintering to start at ∼1350°C.  相似文献   

15.
The pulse electric current sintering technique (PECS) was demonstrated to be effective in rapid densification of fine-grained Al2O3/3Y-ZrO2 using available commercial powders. The composites attained full densification (>99% of TD) at 1450°C in less than 5 min. The composites sintered at a high heating rate had a fine microstructure. The incorporation of 3 vol% 3Y-ZrO2 substantially increased the average fracture strength and the toughness of alumina to as high as 827 MPa and 6.1 MPa·m1/2, respectively. A variation in the heating rate during the PECS process influenced grain size, microstructure, and strength, though there was little or no variation in the fracture toughness.  相似文献   

16.
B6O powders were hot pressed with and without Al2O3 as a sintering additive at temperatures up to 1900°C and a pressure of 50 MPa. The microstructure of a doped and undoped sample was studied by transmission electron microscopy techniques. This paper aims at studying the correlation between micro/nanostructure evolution and the resulting mechanical properties; i.e., hardness and fracture toughness. The addition of alumina yields the formation of a secondary aluminum borate phase in addition to promoting grain growth strongly. While the addition of Al2O3 slightly decreased the hardness of the B6O polycrystals, the corresponding fracture toughness was strongly improved, as compared with the undoped material.  相似文献   

17.
CrN powder consisting of granular particles of ∼3 μm has been prepared by self-propagating high-temperature synthesis under a nitrogen pressure of 12 MPa using Cr metal. Dense pure CrN ceramics and CrN/ZrO2(2Y) composites in the CrN-rich region have been fabricated by hot isostatic pressing for 2 h at 1300°C and 196 MPa. The former ceramics have a fracture toughness ( K IC) of 3.3 MPa ·m1/2 and a bending strength (σb) of 400 MPa. In the latter materials almost all of the ZrO2(2Y) grains (0.36–0.41 μm) are located in the grain boundaries of CrN (∼4.6 μm). The values of K IC (6.1 MPa · m1/2) and σb (1070 MPa) are obtained in the composites containing 50 vol% ZrO2(2Y).  相似文献   

18.
The monolithic glass-forming region of the low phonon and low softening point antimony glasses containing high Sb2O3 (40–75 mol%) in the novel quaternary K2O–B2O3–Sb2O3–ZnO system has been found with the help of X-ray diffraction (XRD) analysis. The structure of a series of glasses with the general composition of (mol%) 15K2O–15B2O3–(70− x )Sb2O3– x ZnO (where x =5–25) has been evaluated by infrared reflection spectral (FT-IRRS) analyses. All the glasses are found to possess a low phonon energy of around 600 cm−1, as revealed by FT-IRRS. Their softening point ( T s), glass transition temperature ( T g), and coefficient of thermal expansion (CTE) have been found to vary in the ranges of 351°–379°C, 252°–273°C, and 195–218 × 10−7 K−1, respectively. These properties are found to be controlled by their fundamental property, like the covalent character of the glasses, which is found to increase with an increase in Sb2O3 content. In addition, the devitrified glasses have been characterized by XRD and field emission scanning electron microscopy, which manifests the presence of nanozinc antimony oxide crystals with sizes of 21–43 nm. The exhibited properties have revealed that they are a new class of versatile materials.  相似文献   

19.
The densification behavior and mechanical properties of B4C hot-pressed at 2000°C for 1 h with additions of Al2O3 up to 10 vol% were investigated. Sinterability was greatly improved by the addition of a small amount of Al2O3. The improvement was attributed to the enhanced mobility of elements through the Al2O3 near the melting temperature or a reaction product formed at the grain boundaries. As a result of this improvement in the density, mechanical properties, such as hardness, elastic modulus, strength, and fracture toughness, increased remarkably. However, when the amount of Al2O3 exceeded 5 vol%, the level of improvement in the mechanical properties, except for fracture toughness, was reduced presumably because of the high thermal mismatch between B4C and Al2O3.  相似文献   

20.
The combined effect of rapid sintering by spark-plasma-sintering (SPS) technique and mechanical milling of γ-Al2O3 nanopowder via high-energy ball milling (HEBM) on the microstructural development and mechanical properties of nanocrystalline alumina matrix composites toughened by 20 vol% silicon carbide whiskers was investigated. SiCw/γ-Al2O3 nanopowders processed by HEBM can be successfully consolidated to full density by SPS at a temperature as low as 1125°C and still retain a near-nanocrystalline matrix grain size (∼118 nm). However, to densify the same nanopowder mixture to full density without the benefit of HEBM procedure, the required temperature for sintering was higher than 1200°C, where one encountered excessive grain growth. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that HEBM did not lead to the transformation of γ-Al2O3 to α-Al2O3 of the starting powder but rather induced possible residual stress that enhances the densification at lower temperatures. The SiCw/HEBMγ-Al2O3 nanocomposite with grain size of 118 nm has attractive mechanical properties, i.e., Vickers hardness of 26.1 GPa and fracture toughness of 6.2 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号