首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of tempered martensite embrittlement in low alloy steels   总被引:1,自引:0,他引:1  
An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed. Formerly with the Lawrence Berkeley Laboratory, University of California.  相似文献   

2.
Stress-Assisted and strain-induced martensites in FE-NI-C alloys   总被引:3,自引:0,他引:3  
A metallographic study was made of the martensite formed during plastic straining of metastable, austenitic Fe-Ni-C alloys withM s temperatures below 0°C. A comparison was made between this martensite and that formed during the deformation of two TRIP steels. In the Fe-Ni-C alloys two distinctly different types of martensite formed concurrently with plastic deformation. The large differences in morphology, distribution, temperature dependence, and other characteristics indicate that the two martensites form by different transformation mechanisms. The first type, stress-assisted martensite, is simply the same plate martensite that forms spontaneously belowM s except that it is somewhat finer and less regularly shaped than that formed by a temperature drop alone. This difference is due to the stress-assisted martensite forming from cold-worked austenite. The second type, strain-induced martensite, formed along the slip bands of the austenite as sheaves of fine parallel laths less than 0.5μm wide strung out on the {111}γ planes of the austenite. Electron diffraction indicated a Kurdjumov-Sachs orientation for the strain-induced martensite relative to the parent austenite. No stress-assisted, plate martensite formed in the TRIP steels; all of the martensite caused by deformation of the TRIP steels appeared identical to the strain-induced martensite of the Fe-Ni-C alloys. It is concluded that the transformation-induced ductility of the TRIP steels is a consequence of the formation of strain-induced martensite. Formerly a graduate student at Stanford University  相似文献   

3.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

4.
The aim of this work was to find the quantitative dependences between fracture toughness Klc and the volume fraction of retained austenite in the matrix of quenched high-speed steels. The tests were carried out on three model alloys of a different content quotient of Mo: W which, after quenching, were gradually supercooled up to ? 196°C and then tempered at 450°C. Also the measurements of the content of retained austenite in the vicinity of the surface of a sample fracture were carried out. It was determined that after tempering at 450°C the fracture toughness of the matrix of high-speed steels is directly proportional to the content of retained austenite in it. Every 1 % by volume of retained austenite increases the fracture toughness Klc of the matrix by about 5%, despite the fact that most probably it is completely transformed into fresh martensite in front of a propagating crack. Higher fracture toughness of the matrix of high-speed steels rich in molybdenum should be explained exlusively by a larger content of retained austenite. Transformations in the martensitic part of the matrix of the alloys richer in molybdenum clearly reduce the advantageous effect of retained austenite on this steel feature.  相似文献   

5.
In an attempt to understand the role of retained austenite on the cryogenic toughness of a ferritic Fe-Mn-AI steel, the mechanical stability of austenite during cold rolling at room temperature and tensile deformation at ambient and liquid nitrogen temperature was investigated, and the microstructure of strain-induced transformation products was observed by transmission electron microscopy (TEM). The volume fraction of austenite increased with increasing tempering time and reached 54 pct after 650 °C, 1-hour tempering and 36 pct after 550 °C, 16-hour tempering. Saturation Charpy impact values at liquid nitrogen temperature were increased with decreasing tempering temperature, from 105 J after 650 °C tempering to 220 J after 550 °C tempering. The room-temperature stability of austenite varied significantly according to the + γ) region tempering temperature;i.e., in 650 °C tempered specimens, 80 to 90 pct of austenite were transformed to lath martensite, while in 550 °C tempered specimens, austenite remained untransformed after 50 pct cold reductions. After tensile fracture (35 pct tensile strain) at -196 °C, no retained austenite was observed in 650 °C tempered specimens, while 16 pct of austenite and 6 pct of e-martensite were observed in 550 °C tempered specimens. Considering the high volume fractions and high mechanical stability of austenite, the crack blunting model seems highly applicable for improved cryogenic toughness in 550 °C tempered steel. Other possible toughening mechanisms were also discussed. Formerly Graduate Student, Seoul National University.  相似文献   

6.
The influence of weld thermal simulation on the transformation kinetics and heat-affected zone (HAZ) microstructure of two high-strength low-alloy (HSLA) steels, HSLA-80 and HSLA-100, has been investigated. Heat inputs of 10 kJ/cm (fast cooling) and 40 kJ/cm (slow cooling) were used to generate single-pass thermal cycles with peak temperatures in the range of 750 °C to 1400 °C. The prior-austenite grain size is found to grow rapidly beyond 1100 °C in both the steels, primarily with the dissolution of niobium carbonitride (Nb(CN)) precipitates. Dilatation studies on HSLA-80 steel indicate transformation start temperatures (T s ) of 550 °C to 560 °C while cooling from a peak temperature (T p ) of 1000 °C. Transmission electron microscopy studies show here the presence of accicular ferrite in the HAZ. The T s value is lowered to 470 °C and below when cooled from a peak temperature of 1200 °C and beyond, with almost complete transformation to lath martensite. In HSLA-100 steel, the T s value for accicular ferrite is found to be 470 °C to 490 °C when cooled from a peak temperature of 1000 °C, but is lowered below 450 °C when cooled from 1200 °C and beyond, with correspondingly higher austenite grain sizes. The transformation kinetics appears to be relatively faster in the fine-grained austenite than in the coarse-grained austenite, where the niobium is in complete solid solution. A mixed microstructure consisting of accicular ferrite and lath martensite is observed for practically all HAZ treatments. The coarse-grained HAZ (CGHAZ) of HSLA-80 steel shows a higher volume fraction of lath martensite in the final microstructure and is harder than the CGHAZ of HSLA-100 steel.  相似文献   

7.
The influence of weld thermal simulation on the transformation kinetics and heat-affected zone (HAZ) microstructure of two high-strength low-alloy (HSLA) steels, HSLA-80 and HSLA-100, has been investigated. Heat inputs of 10 kJ/cm (fast cooling) and 40 kJ/cm (slow cooling) were used to generate single-pass thermal cycles with peak temperatures in the range of 750 °C to 1400 °C. The prior-austenite grain size is found to grow rapidly beyond 1100 °C in both the steels, primarily with the dissolution of niobium carbonitride (Nb(CN)) precipitates. Dilatation studies on HSLA-80 steel indicate transformation start temperatures (T s ) of 550 °C to 560 °C while cooling from a peak temperature (T p ) of 1000 °C. Transmission electron microscopy studies show here the presence of accicular ferrite in the HAZ. The T s value is lowered to 470 °C and below when cooled from a peak temperature of 1200 °C and beyond, with almost complete transformation to lath martensite. In HSLA-100 steel, the T s value for accicular ferrite is found to be 470 °C to 490 °C when cooled from a peak temperature of 1000 °C, but is lowered below 450 °C when cooled from 1200 °C and beyond, with correspondingly higher austenite grain sizes. The transformation kinetics appears to be relatively faster in the fine-grained austenite than in the coarse-grained austenite, where the niobium is in complete solid solution. A mixed microstructure consisting of accicular ferrite and lath martensite is observed for practically all HAZ treatments. The coarse-grained HAZ (CGHAZ) of HSLA-80 steel shows a higher volume fraction of lath martensite in the final microstructure and is harder than the CGHAZ of HSLA-100 steel.  相似文献   

8.
Fracture toughness K IC was measured by double edge-notched tension (DENT) specimens with fatigue precracks on quenching and partitioning (Q&P)-treated high-strength (ultimate tensile strength [UTS] superior to 1200 MPa) sheet steels consisting of 4 to 10 vol pct of retained austenite. Crack extension force, G IC, evaluated from the measured K IC, is used to analyze the role of retained austenite in different fracture behavior. Meanwhile, G IC is deduced by a constructed model based on energy absorption by martensite transformation (MT) behavior of retained austenite in Q&P-treated steels. The tendency of the change of two results is in good agreement. The Q&P-treated steel, quenched at 573 K (300 °C), then partitioned at 573 K (300 °C), holding for 60 seconds, has a fracture toughness of 74.1 MPa·m1/2, which is 32 pct higher than quenching and tempering steel (55.9 MPa·m1/2), and 16 pct higher than quenching and austempering (QAT) steel (63.8 MPa·m1/2). MT is found to occur preferentially at the tips of extension cracks on less stable retained austenite, which further improves the toughness of Q&P steels; on the contrary, the MT that occurs at more stable retained austenite has a detrimental effect on toughness.  相似文献   

9.
The fractures of three model alloys, imitating by their chemical composition the matrixes of the quenched high-speed steels of various Mo: W relations were analyzed. According to the measurements of the stress intensity factor KIc and the differences in the precipitation processes of carbides it was found out that the higher fracture toughness of the matrix of the molybdenum high-speed steels than on the tungsten ones is the results of the differences in the kinetics of precipitation from the martensite matrix of these steels during tempering. After tempering at 250 and 650°C the percentage of the intergranular fracture increases with the increase of the relation of Mo to W in the model alloys of the high-speed steel matrix. This is probably the result of higher precipitation rate of the M3C carbide (at 250°C) and the MC and M6C carbides (at 650°C) in the privileged regions along the grain boundaries. The change of the character of the model alloy fractures after tempering at 450°C from the completely transgranular one in the tungsten alloy to the nearly completely intergranular one in the molybdenum alloy indicates that the coherent precipitation processes responsible for the secondary hardness effect in the tungsten matrix begin at a lower temperature than in the molybdenum matrix. After tempering for the maximum secondary hardness the matrix fractures of the high-speed steels reveal a transgranular character regardless the relation of Mo to W. The higher fracture toughness of the Mo matrix can be the result of the start of the coherent precipitation processes at a higher temperature and their intensity which can, respectively, influence the size of these precipitations, their shape and the degree of dispersion. The transgranular character of the fractures of the S 6-5-2 type high-speed steel in the whole range tempering temperatures results from the presence of the undissolved carbides which while cracking in the region of stress concentration can constitute flaws of critical size which form the path of easy cracking through the grains. The transgranular cracking of the matrix of the real high-speed steels does not change the adventageous influence of molybdenum upon their fracture toughness. On the other hand, the carbides, undissolved during austenitizing, whose size distribution in the molybdenum steels from the point of view of cracking mechanics seems to be unsatisfactory, influence significantly the fracture toughness of these steels.  相似文献   

10.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

11.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

12.
Retained austenite transformation was studied for a 5 wt pct Cr cold work tool steel tempered at 798 K and 873 K (525 °C and 600 °C) followed by cooling to room temperature. Tempering cycles with variations in holding times were conducted to observe the mechanisms involved. Phase transformations were studied with dilatometry, and the resulting microstructures were characterized with X-ray diffraction and scanning electron microscopy. Tempering treatments at 798 K (525 °C) resulted in retained austenite transformation to martensite on cooling. The martensite start (M s ) and martensite finish (M f ) temperatures increased with longer holding times at tempering temperature. At the same time, the lattice parameter of retained austenite decreased. Calculations from the M s temperatures and lattice parameters suggested that there was a decrease in carbon content of retained austenite as a result of precipitation of carbides prior to transformation. This was in agreement with the resulting microstructure and the contraction of the specimen during tempering, as observed by dilatometry. Tempering at 873 K (600 °C) resulted in precipitation of carbides in retained austenite followed by transformation to ferrite and carbides. This was further supported by the initial contraction and later expansion of the dilatometry specimen, the resulting microstructure, and the absence of any phase transformation on cooling from the tempering treatment. It was concluded that there are two mechanisms of retained austenite transformation occurring depending on tempering temperature and time. This was found useful in understanding the standard tempering treatment, and suggestions regarding alternative tempering treatments are discussed.  相似文献   

13.
External test variables such as rate and temperature, and changes in alloy composition are shown to have a number of effects on the fracture of high-strength, metastable austenitic steels. One rate-dependent phenomenon is an unusual fracture mode transition wherein a flat mode changes to a shear mode when the amount of transformation product in the vicinity of the crack tip is reduced by adiabatic heating. The point at which this happens in any one test is dependent upon the velocity of the slowly growing crack which in turn is dependent upon the crosshead rate. Because of this rate effect, the plane stress fracture toughness decreases by as much as 30 pct at higher crosshead rates. Fractographically, it was ascertained that at room temperature, both phases failed in a ductile manner, but at ?196°C, martensite containing greater than about 0.27 wt pct C would cleave. This resulted in a “ductile-brittle” transition in metastable austenites at ?196°C as a function of carbon content. Other compositional variations change the austenite stability which controls the amount of strain-induced marteniste occurring at the crack tip. It is shown that a plane stress fracture toughness (K C) approaching 500,000 psi-in.1/2 may be achieved by decreasing the stability of the austenite. The variation ofK c with austenite stability agrees qualitatively with a theoretical model for the invariant shear contribution to the fracture toughness of metastable austenites.  相似文献   

14.
The effect of a quenching and partitioning (Q&P) heat treatment with a quenching temperature (TQ) range from 20 to 190 °C is investigated for two martensitic stainless tool steels X40Cr14 and “X25CrN13”, focusing on microstructural evolution, hardness, and toughness. The influence on the retained austenite (RA) content, when replacing part of carbon with nitrogen, is of core interest. The amount of RA is analyzed by X-ray diffraction and is additionally proved with electron backscatter diffraction, and the RA content is thermodynamically calculated. Subsequently, the effect of the microstructure on toughness and hardness is investigated. For both steels, the toughness maximum is reached in the region of the RA maximum. The “X25CrN13” attains higher toughness at higher RA contents. Higher RA contents do not benefit X40Cr14. Furthermore, the effect of double tempering at higher tempering temperatures after Q&P on the steels is investigated. Besides RA contents and hardness, dilatometer curves are used to evaluate the formation of fresh martensite in the microstructure. The secondary hardness maximum of “X25CrN13” is reached at 500 °C and that of X40Cr14 is at 480 °C. For double tempering temperature at 520 °C, TQ has little effect on toughness, and “X25CrN13” shows better values.  相似文献   

15.
Laboratory thermomechanical processing (TMP) experiments have been carried out to study the austenite transformation characteristics, precipitation behavior, and recrystallization of deformed ferrite for an interstitial-free (IF) steel in the temperature range just below Ar 3. For cooling rates in the range 0.1 °C s−1 to 130 °C s−1, austenite transforms to either polygonal ferrite (PF) or massive ferrite (MF). The transformation temperatures vary systematically with cooling rate and austenite condition. There is indirect evidence that the transformation rates for both PF and MF are decreased by the presence of substitutional solute atoms and precipitate particles. When unstable austenite is deformed at 850 °C, it transforms to an extremely fine strain-induced MF. Under conditions of high supersaturation of Ti, Nb, and S, (Ti,Nb) x S y precipitates form at 850 °C as coprecipitates on pre-existing (Ti,Nb)N particles and as discrete precipitates within PF grains. Pre-existing intragranular (Ti,Nb) x S y precipitates retard recrystallization and grain coarsening of PF deformed at 850 °C and result in a stable, recovered subgrain structure. The results are relevant to the design of TMP schedules for warm rolling of IF steels.  相似文献   

16.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Some in situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C films upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The situation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which occurs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can occur in the same steels, depending on the tempering conditions.  相似文献   

17.
The influence of forming temperature and strain rate on the ductility and strain-induced transformation behavior of retained austenite in a ferritic 0.4C-1.5Si-1.5Mn (wt pct) dual-phase steel containing fine retained austenite islands of about 15 vol pct has been investigated. Ex- cellent combinations of total elongations (TELs), about 48 pct, and tensile strength (TS), about 1000 MPa, were obtained at temperatures between 100 °C and 200 °C and at a strain rate of 2.8 X 10-4/s. Under these optimum forming conditions, the flow curves were characterized by intensive serrations and increased strain-hardening rate over a large strain range. The retained austenite islands were mechanically the most stable at temperatures between 100 °C and 200 °C, and the retained austenite stability appeared to be mainly controlled by strain-induced martensite and bainite transformations (SIMT and SIBT, respectively), with deformation twinning occur- ring in the retained austenite. The enhanced TEL and forming temperature dependence of TEL were primarily connected with both the strain-induced transformation behavior and retained aus- tenite stability.  相似文献   

18.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Somein situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C filMs upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The sit11Ation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which o°Curs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can o°Cur in the same steels, depending on the tempering conditions.  相似文献   

19.
The microstructures and mechanical properties of a series of vacuum melted Fe/(2 to 4) Mo/(0.2 to 0.4) C steels with and without cobalt have been investigated in the as-quenched fully martensitic condition and after quenching and tempering for 1 h at 673 K (400°C) and 873 K (600°C); austenitizing was done at 1473 K (1200°C) in argon. Very good strength and toughness properties were obtained with the Fe/2 Mo/0.4 C alloy in the as-quenched martensitic condition and this is attributed mainly to the absence of internal twinning. The slightly inferior toughness properties compared to Fe/Cr/C steels is attributed to the absence of interlath retained austenite. The two 0.4 pct carbon steels having low Mo contents had approximately one-half the amount of transformation twinning associated with the two 0.4 pct carbon steels having high Mo contents. The plane strain fracture toughness of the steels with less twinning was markedly superior to the toughness of those steels with similar alloy chemistry which had more heavily twinned microstructures. Experiments showed that additions of Co to a given Fe/Mo/C steel raisedM S but did not decrease twinning nor improve toughness. Molybdenum carbide particles were found in all specimens tempered at 673 K (400°C). The Fe/Mo/C system exhibits secondary hardening after tempering at 873 K (600°C). The precipitate is probably Mo2C. This secondary hardening is associated with a reduction in toughness. Additions of Co to Fe/Mo/C steels inhibited or eliminated the secondary hardening effect normally observed. Toughness, however, did not improve and in fact decreased with Co additions.  相似文献   

20.
Cyclic hardening-softening behavior of a TRIP-aided dual-phase (TDP) steel composed of a ferrite matrix and retained austenite plus bainite second phase was examined at temperatures ranging from 20 °C to 200 °C. An increment of the cyclic hardening was related to (1) a long-range internal stress due to the second phase and (2) the strain-induced transformation (SIT) behavior of the retained austenite, as follows. Large cyclic hardening, similar to a conventional ferrite-martensite dual-phase steel, appeared in the TDP steel deformed at 20 °C, where the SIT of the retained austenite occurred at an early stage. This was mainly caused by a large increase in strain-induced martensite content or strain-induced martensite hardening, with a small contribution of the internal stress. In this case, shear and expansion strains on the SIT considerably decreased the internal stress in the matrix. With increasing deformation temperature or retained austenite stability, the amount of cyclic hardening decreased with a significant decrease in plastic strain amplitude. This interesting cyclic behavior was principally ascribed to the internal stress, which was enhanced by stable and strain-hardened retained austenite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号