首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous $hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15}(hbox{B}_{5} hbox{N}_{3})$ film grown at 300 $^{circ}hbox{C}$ showed a high-$k$ value of 71 at 100 kHz, and similar $k$ value was observed at 0.5–5.0 GHz. The 80-nm-thick film exhibited a high capacitance density of 7.8 fF/$muhbox{m}^{2}$ and a low dissipation factor of 0.95% at 100 kHz with a low leakage-current density of 1.23 nA/ $hbox{cm}^{2}$ at 1 V. The quadratic and linear voltage coefficient of capacitances of the $hbox{B}_{5}hbox{N}_{3}$ film were 438 ppm/$hbox{V}^{2}$ and 456 ppm/V, respectively, with a low temperature coefficient of capacitance of 309 ppm/$^{circ}hbox{C}$ at 100 kHz. These results confirmed the potential of the amorphous $hbox{B}_{5}hbox{N}_{3}$ film as a good candidate material for a high-performance metal–insulator–metal capacitors.   相似文献   

2.
Buckling was observed in $hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15}$ (BiNbO) films grown on $hbox{TiN}/hbox{SiO}_{2}/hbox{Si}$ at 300 $^{circ}hbox{C}$ but not in films grown at room temperature and annealed at 350 $^{circ}hbox{C}$. The 45-nm-thick films showed a high capacitance density and a low dissipation factor of 8.81 $hbox{fF}/muhbox{m}^{2}$ and 0.97% at 100 kHz, respectively, with a low leakage current density of 3.46 $hbox{nA}/hbox{cm}^{2}$ at 2 V. The quadratic and linear voltage coefficients of capacitance of this film were 846 $hbox{ppm}/hbox{V}^{2}$ and 137 ppm/V, respectively, with a low temperature coefficient of capacitance of 226 $hbox{ppm}/^{circ}hbox{C}$ at 100 kHz. This suggests that a BiNbO film grown on a $hbox{TiN}/ hbox{SiO}_{2}/hbox{Si}$ substrate is a good candidate material for high-performance metal–insulator–metal capacitors.   相似文献   

3.
We have fabricated high-$kappa hbox{Ni}/hbox{TiO}_{2}/hbox{ZrO}_{2}/ hbox{TiN}$ metal–insulator–metal (MIM) capacitors. A low leakage current of $hbox{8} times hbox{10}^{-8} hbox{A/cm}^{2}$ at 125 $^{circ}hbox{C}$ was obtained with a high 38- $hbox{fF}/muhbox{m}^{2}$ capacitance density and better than the $hbox{ZrO}_{2}$ MIM capacitors. The excellent device performance is due to the lower electric field in 9.5-nm-thick $hbox{TiO}_{2}/ hbox{ZrO}_{2}$ devices to decrease the leakage current and to a higher $kappa$ value of 58 for $ hbox{TiO}_{2}$ as compared with that of $hbox{ZrO}_{2}$ to preserve the high capacitance density.   相似文献   

4.
Electrical properties of $hbox{Ga}_{2}hbox{O}_{3}/hbox{GaAs}$ interfaces with GdGaO cap dielectrics used in recent enhancement-mode GaAs-based NMOSFETs which perform in line with theoretical model predictions are presented. Capacitors with GdGaO thickness ranging from 3.0 to 18 nm ($hbox{0.9} leq hbox{EOT} leq hbox{3.9} hbox{nm}$) have been characterized by capacitance–voltage measurements. Midgap interface state density $D_{rm it}$, effective workfunction $phi_{m}$, fixed charge $Q_{f}$, dielectric constant $kappa$, and low field leakage current density are $hbox{2} times hbox{10}^{11} hbox{cm}^{-2} cdot hbox{eV}^{-1}$, 4.93 eV, $-hbox{8.9} times hbox{10}^{11} hbox{cm}^{-2}$, 19.5, and $hbox{10}^{-9}{-} hbox{10}^{-8} hbox{A/cm}^{2}$, respectively. The presence of interfacial Gd was confirmed to dramatically degrade electrical interface properties. The data illuminate the intimate interplay between heterostructure and interface engineering to achieve optimum MOSFET operation.   相似文献   

5.
A comparative study is made of the low-frequency noise (LFN) in amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with $hbox{Al}_{2}hbox{O}_{3}$ and $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ gate dielectrics. The LFN is proportional to $hbox{1}/f^{gamma}$, with $gamma sim hbox{1}$ for both devices, but the normalized noise for the $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ device is two to three orders of magnitude lower than that for the $hbox{Al}_{2} hbox{O}_{3}$ device. The mobility fluctuation is the dominant LFN mechanism in both devices, but the noise from the source/drain contacts becomes comparable to the intrinsic channel noise as the gate overdrive voltage increases in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices. The $hbox{SiN}_{x}$ interfacial layer is considered to be very effective in reducing LFN by suppressing the remote phonon scattering from the $hbox{Al}_{2}hbox{O}_{3}$ dielectric. Hooge's parameter is extracted to $sim !!hbox{6.0} times hbox{10}^{-3}$ in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices.   相似文献   

6.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

7.
We report on the dc and microwave characteristics of an $ hbox{InP/In}_{0.37}hbox{Ga}_{0.63}hbox{As}_{0.89}hbox{Sb}_{0.11}/hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ double heterojunction bipolar transistor grown by solid-source molecular beam epitaxy. The pseudomorphic $hbox{In}_{0.37}hbox{Ga}_{0.63}hbox{As}_{0.89}hbox{Sb}_{0.11}$ base reduces the conduction band offset $Delta E_{C}$ at the emitter/base junction and the base band gap, which leads to a very low $V_{rm BE}$ turn-on voltage of 0.35 V at 1 $hbox{A/cm}^{2}$ . A current gain of 125 and a peak $f_{T}$ of 238 GHz have been obtained on the devices with an emitter size of $hbox{1}times hbox{10} muhbox{m}^{2}$, suggesting that a high collector average velocity and a high current capability are achieved due to the type-II lineup at the InGaAsSb/InGaAs base/collector junction.   相似文献   

8.
We report the first demonstration of metal–insulator–metal (MIM) capacitors with $hbox{Sm}_{2}hbox{O}_{3}/hbox{SiO}_{2}$ stacked dielectrics for precision analog circuit applications. By using the “canceling effect” of the positive quadratic voltage coefficient of capacitance (VCC) of $hbox{Sm}_{2}hbox{O}_{3}$ and the negative quadratic VCC of $hbox{SiO}_{2}$, MIM capacitors with capacitance density exceeding 7.3 $hbox{fF}/muhbox{m}^{2}$ , quadratic VCC of around $-hbox{50} hbox{ppm/V}^{2}$ , and leakage current density of $hbox{1} times hbox{10}^{-7} hbox{A/cm}^{2}$ at $+$3.3 V are successfully demonstrated. The obtained capacitance density and quadratic VCC satisfy the technical requirements specified in the International Technology Roadmap for Semiconductors through the year 2013 for MIM capacitors to be used in precision analog circuit applications.   相似文献   

9.
A systematic study on the switching mechanism of an $hbox{Al}/ hbox{Pr}_{0.7}hbox{Ca}_{0.3}hbox{MnO}_{3}$ (PCMO) device was performed. A polycrystalline PCMO film was deposited using a conventional sputtering method. A thin Al layer was introduced to induce a reaction with the PCMO, forming aluminum oxide $(hbox{AlO}_{x})$. Transmission electron microscopy analysis of the interface between Al and PCMO showed that resistive switching was governed by the formation and dissolution of $hbox{AlO}_{x}$. Some basic memory characteristics, such as good cycle endurance and data retention of up to $hbox{10}^{4}$ s at 125 $^{circ}hbox{C}$, were also obtained. It also showed excellent switching uniformity and high device yield.   相似文献   

10.
This paper reports on the application of a bilayer polymethylmethacrylate (PMMA)/ $hbox{ZrO}_{2}$ dielectric in copper phthalocyanine (CuPc) organic field-effect transistors (OFETs). By depositing a PMMA layer on $hbox{ZrO}_{2}$, the leakage of the dielectric is reduced by one order of magnitude compared to single-layer $hbox{ZrO}_{2}$. A high-quality interface is obtained between the organic semiconductor and the combined insulators. By integrating the advantages of polymer and high- $k$ dielectrics, the device achieves both high mobility and low threshold voltage. The typical field-effect mobility, threshold voltage, on/off current ratio, and subthreshold slope of OFETs with bilayer dielectric are $hbox{5.6}timeshbox{10}^{-2} hbox{cm}^{2}/hbox{V} cdot hbox{s}$, 0.8 V, $hbox{1.2} times hbox{10}^{3}$, and 2.1 V/dec, respectively. By using the bilayer dielectrics, the hysteresis observed in the devices with single-layer $hbox{ZrO}_{2}$ is no longer present.   相似文献   

11.
Long and short buried-channel $hbox{In}_{0.7}hbox{Ga}_{0.3}hbox{As}$ MOSFETs with and without $alpha$-Si passivation are demonstrated. Devices with $alpha$-Si passivation show much higher transconductance and an effective peak mobility of 3810 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$. Short-channel MOSFETs with a gate length of 160 nm display a current of 825 $muhbox{A}/muhbox{m}$ at $V_{g} - V_{t} = hbox{1.6} hbox{V}$ and peak transconductance of 715 $muhbox{S}/muhbox{m}$. In addition, the virtual source velocity extracted from the short-channel devices is 1.4–1.7 times higher than that of Si MOSFETs. These results indicate that the high-performance $hbox{In}_{0.7}hbox{Ga}_{0.3} hbox{As}$-channel MOSFETs passivated by an $alpha$ -Si layer are promising candidates for advanced post-Si CMOS applications.   相似文献   

12.
Field-controllable pentacene-semiconductor-based strain sensors were fabricated with hybrid gate dielectrics using polyvinyl phenol (PVP) and high-$k$ inorganic tantalum pentoxide $(hbox{Ta}_{2}hbox{O}_{5})$ onto polyethylene naphthalate films. The $hbox{Ta}_{2}hbox{O}_{5}$ gate-dielectric layer combined with a thin PVP layer to form very smooth and hydrophobic surfaces turns out to improve the molecular structures of pentacene films significantly. The PVP– $hbox{Ta}_{2}hbox{O}_{5}$ hybrid-gate-dielectric films exhibit a high dielectric constant of 19.27 and a leakage-current density of as low as 100 $hbox{nA/cm}^{2}$ . The sensors employing a thin-film-transistor-like Wheatstone bridge configuration able to operate at reduced voltage ($sim$4 V) show good device characteristics with a field-effect mobility of 1.89 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$ and a threshold voltage of $-$0.5 V. The strain sensor characterized with bending at 45$^{circ}$ with respect to the bridge bias direction with different bending radii of 50-, 40-, 30-, 20-, and 8-mm displays output signals improved in linearity in a low range of operating voltages.   相似文献   

13.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

14.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

15.
Metal–ferroelectric–insulator–semiconductor (MFIS) capacitors with 400-nm-thick $hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}$ (BNdT) ferroelectric film and 4-nm-thick hafnium oxide $(hbox{HfO}_{2})$ layer on silicon substrate have been fabricated and characterized. It is demonstrated that the $hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}/ hbox{HfO}_{2}/hbox{Si}$ structure exhibits a large memory window of around 1.12 V at an operation voltage of 3.5 V. Moreover, the MFIS memory structure suffers only 10% degradation in the memory window after $hbox{10}^{10}$ switching cycles. The retention time is 100 s, which is enough for ferroelectric DRAM field-effect-transistor application. The excellent performance is attributed to the formation of well-crystallized BNdT perovskite thin film on top of the $ hbox{HfO}_{2}$ buffer layer, which serves as a good seed layer for BNdT crystallization, making the proposed $hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}/ hbox{HfO}_{2}/hbox{Si}$ suitable for high-performance ferroelectric memories.   相似文献   

16.
We report the first demonstration of a strained $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ channel n-MOSFET featuring in situ doped $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ source/drain (S/D) regions. The in situ silicondoped $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ S/D was formed by a recess etch and a selective epitaxy of $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ in the S/D by metal–organic chemical vapor deposition. A lattice mismatch of $sim$0.9% between $ hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ and $hbox{In}_{0.4} hbox{Ga}_{0.6}hbox{As}$ S/D gives rise to lateral tensile strain and vertical compressive strain in the $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ channel region. In addition, the in situ Si-doping process increases the carrier concentration in the S/D regions for series-resistance reduction. Significant drive-current improvement over the control n-MOSFET with Si-implanted $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ S/D regions was achieved. This is attributed to both the strain-induced band-structure modification in the channel that reduces the effective electron mass along the transport direction and the reduction in the S/D series resistance.   相似文献   

17.
We have studied the stress reliability of high-$kappa$ $hbox{Ni/TiO}_{2}/hbox{ZrO}_{2}/hbox{TiN}$ metal–insulator–metal capacitors under constant-voltage stress. The increasing $hbox{TiO}_{2}$ thickness on $hbox{ZrO}_{2}$ improves the 125-$^{circ}hbox{C}$ leakage current, capacitance variation $(Delta C/C)$, and long-term reliability. For a high density of 26 $hbox{fF}/mu hbox{m}^{2}$ , good extrapolated ten-year reliability of small $Delta C/ break C sim hbox{0.71}%$ is obtained for the $ hbox{Ni/10-nm-}hbox{TiO}_{2}/hbox{6.5-nm-} hbox{ZrO}_{2}/break hbox{TiN}$ device at 2.5-V operation.   相似文献   

18.
In this letter, TiN nanocrystals three-dimensionally embedded in the $ hbox{Si}_{3}hbox{N}_{4}$ formed by spinodal phase segregation was investigated as the discrete charge-trapping layer in a metal–oxide–nitride–oxide–silicon structure for nonvolatile-memory applications. TiN-nanocrystal formation was verified by X-ray diffraction analysis while the 3-D distribution of nanocrystals in the $hbox{Si}_{3}hbox{N}_{4}$ film was confirmed by transmission electron microscopy with the average size of 5.1 nm and a density of $hbox{9.8} timesbreak hbox{10}^{11} hbox{cm}^{-2}$. The promising memory performance was evidenced by the large memory window of 1.81 V with $pm$4-V program/erase voltage, the high operation speed of 1.52-V threshold-voltage shift by programming at $+$4 V for 10 ms, the negligible memory-window degradation up to $hbox{10}^{5}$ operation cycles, and 11% charge loss after ten-year operation. Most importantly, the charge-storage structure can be formed by a cosputtering approach which is simple and fully compatible with existent ultralarge scale integration technology.   相似文献   

19.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

20.
In this paper, a $hbox{Si}_{3}hbox{N}_{4}/hbox{ZrO}_{2}$ split charge trapping layer (SCTL) is proposed for multibit-cell Flash memory. The complementary potential wells of $hbox{Si}_{3}hbox{N}_{4}/hbox{ZrO}_{2}$ storage nodes enable independent node control when the Fowler–Nordheim (F–N) method is applied for programming/erasing (P/E). Experiment and simulation results suggest that the 2-bit (2-b) charge storage is accomplished by physical data node separation for the SCTL rather than charge injection control. The well-confined charge storages suppress the second-bit effect, enabling excellent 2-b data clearance for short-channel SCTL devices. It was found that the remaining memory windows after $hbox{10}^{5} hbox{s}$ decrease, dependent on the difference of the trap properties between $ hbox{Si}_{3}hbox{N}_{4}$ and $hbox{ZrO}_{2}$.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号