共查询到10条相似文献,搜索用时 140 毫秒
1.
提出一种基于异类蚁群的双种群蚁群(Dual Population Ant Colony Algorithm Based on Heterogeneous Ant Colonies,DPACBH)算法,算法将两种信息素更新机制不同的蚁群分别独立进行进化求解,并定期交换优良解和信息来改善解的多样性,增强跳出局部最优的能力,使算法更容易收敛到全局最优解。以TSP(Travel Salesman Problem)问题为例所进行的计算表明,该算法比基本双种群蚁群算法具有更好的收敛速度和准确性。 相似文献
2.
尹向东 《计算机工程与应用》2009,45(17):113-115
利用遗传算法的快速全局搜索能力和蚁群算法的正反馈收敛机制,引入遗传蚁群算法(Genetic Algorithm Ant Colony algorithm)GAAC来解决QoS路由问题。算法设计的基本思想是首先由遗传算法产生较优解,较优的路径留下信息素,其他路径不改变,然后在有一定初始信息素分布的情况下,用蚁群算法求精解。仿真表明算法比单一采用遗传算法和蚁群算法进行路由选择具有更好的性能,且更适合于动态网络环境下的QoS路由选择。 相似文献
3.
基于改进蚁群算法的云计算任务调度 总被引:1,自引:0,他引:1
利用云中资源进行高效任务调度是保证云计算系统可靠运行的关键问题。提出一种基于改进蚁群优化算法的任务调度方法。算法采用蚂蚁系统的伪随机比例规则进行寻优,防止算法过快收敛到局部最优解,同时结合排序蚂蚁系统和最大最小蚂蚁系统的设计思想完成信息素更新,有效求解优化问题。实验结果显示,该算法具有很好的寻优能力,提高了云资源的利用率。 相似文献
4.
提出了基于模糊矩阵的数据聚类模型,其中引入了聚类过程的全局性控制模糊矩阵,描述了数据聚类的过程;提出了基于模糊矩阵的蚁群聚类算法,实验结果证明了算法的正确性和高效性。 相似文献
5.
提出了一种新颖的基于Q-学习、蚁群算法和轮盘赌算法的多Agent强化学习。在强化学习算法中,当Agent数量增加到足够大时,就会出现动作空间灾难性问题,即:其学习速度骤然下降。另外,Agent是利用Q值来选择下一步动作的,因此,在学习早期,动作的选择严重束缚于高Q值。把蚁群算法、轮盘赌算法和强化学习三者结合起来,期望解决上述提出的问题。最后,对新算法的理论分析和实验结果都证明了改进的Q学习是可行的,并且可以有效地提高学习效率。 相似文献
6.
基于混合蚁群算法的物流配送路径优化 总被引:2,自引:0,他引:2
基本蚁群算法在优化过程中存在搜索时间长、易陷入局部最优解的缺点.研究构造了一种基于蚁群算法的混合算法,利用蚁群算法首先求出问题的基本可行解,采用遗传变异中的单亲逆转算子进行再次优化,求得问题最优解.对物流配送路径优化的仿真试验表明,相对于基本蚁群算法和遗传算法,混合算法的优化质量和效率更优. 相似文献
7.
任务调度策略是网格计算的核心问题。在系统任务调度和资源分配中,提出一种基于量子蚁群算法的任务调度策略。算法将量子计算与蚁群算法相融合,通过对蚁群进行量子化编码并采用量子旋转门及非门操作,实现对任务自适应启发式的分配和优化。算法有效增强了种群的多样性、克服了遗传算法和蚁群算法的早熟收敛和退化现象。仿真实验中,分别与基于遗传算法和基于蚁群算法的任务调度策略相对比,结果表明算法有效缩短了任务调度的时间跨度,增强了网格系统的性能。 相似文献
8.
针对基本蚁群算法在求解能力方面的不足,提出一种基于群体分类的自适应蚁群算法.该算法在智能蚁群的基础上引入随机蚁群以便扩大搜索空间,不同蚁群实行各自不同的搜索前进策略和信息更新机制,并可通过调节随机蚁群与智能蚁群的比例来控制收敛速度.多个旅行商问题的仿真实验证明,相比ACS、MMAX算法,该算法的求解能力得到了改进. 相似文献
9.
为克服现有蚁群算法运算过程中易出现停滞现象、收敛速度慢等缺点,提出了一种基于模拟退火策略的多道逆向蚁群算法。通过向原始蚁群中引入逆向蚂蚁,并结合模拟退火思想确定蚁群中逆向蚂蚁的数目,来提高算法全局寻优能力。在算法执行过程中一组蚂蚁分成几群并行运算,通过交换策略,有效地利用了当前最优解,提高了算法收敛速度。将该算法应用于旅行商问题的求解,仿真实验结果表明该算法的全局寻优能力和收敛速度都得到了很大改善。 相似文献