首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
结合粒子群优化算法和差分进化算法思想提出了一个杂凑的全局优化算法——PSO-DE,通过对4个基准测试函数的实验测试,并与PSO和DE算法比较,证明新算法在低维(≤10维)搜索空间可以获得更高质量的解。  相似文献   

2.
改进的PSO混合算法   总被引:2,自引:0,他引:2  
为了提高粒子群算法的寻优速度和寻优精度,提出一种改进的PSO混合算法。在差分进化(DE)算法中引入了动态比例因子,在PSO算法中引入DE算法的变异、交叉操作,重新构造PSO算法的粒子位置更新公式。选取了4个基准函数进行测试,并与其他PSO混合算法作了比较。仿真结果表明该方法是有效的。  相似文献   

3.
《微型机与应用》2014,(17):83-87
提出了一个全新的混合算法并命名为微粒群差分算法,该算法在标准微粒群算法的基础上结合了差分进化算法用于求解约束的数值和工程优化问题。传统的标准微粒群算法由于其种群单一性容易陷入局部最优值,针对这一缺点利用差分进化算法中的变异、交叉、选择3个算子来更新每次迭代每个粒子新生产的位置以使粒子跳出局部优值。融合了标准微粒群算法和差分进化算法优点的混合算法加速了粒子的收敛速度。为了避免惩罚因子的选择对实验结果的影响,采取了可行规则法来处理约束优化问题。最后将微粒群差分算法用于5个基准函数和两个工程问题,并与其他算法作了比较,试验结果表明,微粒群差分算法算法具有很好的精准性、鲁棒性和有效性。  相似文献   

4.
基于混沌和差分进化的混合粒子群优化算法   总被引:4,自引:0,他引:4  
刘建平 《计算机仿真》2012,29(2):208-212
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。  相似文献   

5.
针对粒子群优化算法容易陷入局部最优解并且存在过早收敛的问题,将类电磁机制算法中的吸引-排斥机制引入到粒子群优化算法中,提出一种类电磁机制算法和粒子群优化算法的混合优化算法(EMPSO).首先按照基本粒子群优化算法的寻优方式对各粒子进行更新,再利用类电磁机制中的吸引-排斥机制对个体最优粒子和群体最优粒子进行移动,最后通过几个标准测试函数进行了测试,并与标准粒子群算法(PSO)、免疫粒子群算法(IPSO)、混沌粒子群算法(CPSO)进行对比.测试结果表明,改进算法提高了全局搜索能力和熟练速度,改善了优化性能.  相似文献   

6.
基于差分进化和粒子群优化算法的混合优化算法   总被引:2,自引:1,他引:2  
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA).该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索.在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛.通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点.  相似文献   

7.
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法.  相似文献   

8.
利用粒子群算法的快速收敛性和差分进化算法的搜索精度较高等特点,提出了一种新的混合优化算法。该算法在粒子群算法的中后期,在已经寻找到的最优位置周围,随机生成一定数量的粒子进行差分进化算法,可以减少一定的运算量和在较优的区域进行寻找最优解。通过几个Benchmark函数的测试证明,新的混合算法具有搜索精度更高和更快收敛的优点。  相似文献   

9.
设计了融合差分进化和PSO算法优点的混合智能优化算法DEPSO,通过在粒子迭代过程中,随机选择一定数量的粒子进行差分进化操作,增加粒子的多样性,使陷入局部极小的粒子逃出,以保证DEPSO的全局收敛性能,并采用典型测试函数验证了DEPSO的性能。针对模糊相关机会规划EOQ模型求解难题,设计了基于模糊模拟方法和DEPSO的智能求解算法来计算模糊事件的可信性,从而得到了使库存费用不超过预算水平的可信度最大的最优订货量,算例证实了此求解算法的有效性。  相似文献   

10.
11.
PSO和AFSA混合优化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
结合粒子群优化(PSO)算法和人工鱼群算法(AFSA)的优势,提出一种PSO-AFSA混合算法。将种群分为2个子群体,在每次迭代中,一个子群体利用PSO算法进化,另一个子群体利用AFSA进化,2个算法共享整个种群极值信息。通过混合算法对5个标准函数进行实验,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。  相似文献   

12.
针对标准粒子群算法容易陷入局部极值和精度低的问题,提出一种嵌入极值优化算法的粒子群优化算法。在线性下降的惯性权重粒子群算法运行过程中,间隔一定迭代次数与极值优化算法相结合,利用其波动性增加种群的多样性,并有效结合粒子群算法较强的全局探索能力和极值优化算法精细的局部搜索性能,以较高精度收敛到全局极值。仿真实验结果表明,该混合算法是一种求解高维多峰连续函数极值的有效方法。  相似文献   

13.
针对网格计算中的资源分配问题,提出一种融合粒子群优化算法和遗传算法的新算法。通过在粒子群算法中引入遗传算法,有效克服粒子群算法容易陷入局部最优值这一固有缺陷,重新在搜索空间寻找全局最优值。该方法具有操作简单、设置参数少、收敛速度快等特点。仿真实验结果表明,该融合算法在网格资源分配方面能取得较好的效果。  相似文献   

14.
针对基本粒子群算法目前存在的收敛速度过慢且容易于陷入局部极值等方面问题,提出根据蜂群算法的领域搜索思想,改变算法中粒子领域结构。通过借鉴蜂群的领域搜索策略解决粒子群算法陷入局部极值的问题,提高收敛速度。并将改进后粒子群算法应用于阈值图像分割中,仿真结果表明改进算法在图像阈值分割中减少阈值的寻优时间,优化收敛精度,提高图像处理的实时性和精度性。  相似文献   

15.
基于网络邻域拓扑的粒子群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
探讨类无标度网、全局耦合网、环形网、随机网、星形网等邻域拓扑结构对粒子群优化算法寻优效果的影响。理论分析与实验结果显示,以类无标度网作为邻域拓扑结构的粒子群优化算法在误差范围内的寻优效果最好,收敛速度最快,可以较好地避免陷入局部最优,且网络平均度对粒子群优化算法的寻优效果有一定的影响。  相似文献   

16.
Web文档聚类是web数据挖掘的重要任务之一,针对Web文档向量空间的高维性与数据聚类问题的最优化性质,采用LDA对文档向量空间进行降维,提出运用混合优化算法GA_PSO在此低维空间进行寻优,来发现Web文档集的最优簇结构.通过在真实数据集20Newsgroups的实验,结果表明我们的方法具有良好的聚类有效性,能较完全和准确地将主题相关的Web文档聚成一类.  相似文献   

17.
针对回归测试中测试用例最小化问题,将粒子群优化算法和随机算法相结合,提出一种二维随机粒子群优化算法,用来解决测试用例最小化的问题。该算法采用二维适应值评价函数,一维是覆盖度,另一维是冗余度。利用各个测试用例的覆盖率为概率随机产生下一代个体位置。实验结果表明该算法性能优良且具有较好的稳定性。  相似文献   

18.
李飞  张琨  牛京武  王浩 《计算机工程》2013,39(3):218-222
为提高在有限带宽下气象观测中心海量数据的任务调度和数据传输效率,提出一种基于粒子群优化(PSO)改进算法的气象数据网格任务调度算法。给出副本域的概念,将PSO算法与副本域相结合,设计任务调度模型和符合气象数据网格环境的目标函数。仿真结果表明,该算法完成调度的时间小于遗传算法和穷尽搜索算法,收敛速度快于离散型PSO算法,且更加稳定。  相似文献   

19.
通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial Bee Colony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法。在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两个算法寻优后进行比较,选出最优适应值。通过混合算法对4个标准函数进行测试,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号