共查询到19条相似文献,搜索用时 125 毫秒
1.
结合粒子群优化算法和差分进化算法思想提出了一个杂凑的全局优化算法——PSO-DE,通过对4个基准测试函数的实验测试,并与PSO和DE算法比较,证明新算法在低维(≤10维)搜索空间可以获得更高质量的解。 相似文献
2.
3.
《微型机与应用》2014,(17):83-87
提出了一个全新的混合算法并命名为微粒群差分算法,该算法在标准微粒群算法的基础上结合了差分进化算法用于求解约束的数值和工程优化问题。传统的标准微粒群算法由于其种群单一性容易陷入局部最优值,针对这一缺点利用差分进化算法中的变异、交叉、选择3个算子来更新每次迭代每个粒子新生产的位置以使粒子跳出局部优值。融合了标准微粒群算法和差分进化算法优点的混合算法加速了粒子的收敛速度。为了避免惩罚因子的选择对实验结果的影响,采取了可行规则法来处理约束优化问题。最后将微粒群差分算法用于5个基准函数和两个工程问题,并与其他算法作了比较,试验结果表明,微粒群差分算法算法具有很好的精准性、鲁棒性和有效性。 相似文献
4.
基于混沌和差分进化的混合粒子群优化算法 总被引:4,自引:0,他引:4
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。 相似文献
5.
针对粒子群优化算法容易陷入局部最优解并且存在过早收敛的问题,将类电磁机制算法中的吸引-排斥机制引入到粒子群优化算法中,提出一种类电磁机制算法和粒子群优化算法的混合优化算法(EMPSO).首先按照基本粒子群优化算法的寻优方式对各粒子进行更新,再利用类电磁机制中的吸引-排斥机制对个体最优粒子和群体最优粒子进行移动,最后通过几个标准测试函数进行了测试,并与标准粒子群算法(PSO)、免疫粒子群算法(IPSO)、混沌粒子群算法(CPSO)进行对比.测试结果表明,改进算法提高了全局搜索能力和熟练速度,改善了优化性能. 相似文献
6.
基于差分进化和粒子群优化算法的混合优化算法 总被引:2,自引:1,他引:2
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA).该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索.在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛.通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点. 相似文献
7.
一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法 总被引:4,自引:1,他引:4
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法. 相似文献
8.
利用粒子群算法的快速收敛性和差分进化算法的搜索精度较高等特点,提出了一种新的混合优化算法。该算法在粒子群算法的中后期,在已经寻找到的最优位置周围,随机生成一定数量的粒子进行差分进化算法,可以减少一定的运算量和在较优的区域进行寻找最优解。通过几个Benchmark函数的测试证明,新的混合算法具有搜索精度更高和更快收敛的优点。 相似文献
9.
11.
12.
13.
14.
针对基本粒子群算法目前存在的收敛速度过慢且容易于陷入局部极值等方面问题,提出根据蜂群算法的领域搜索思想,改变算法中粒子领域结构。通过借鉴蜂群的领域搜索策略解决粒子群算法陷入局部极值的问题,提高收敛速度。并将改进后粒子群算法应用于阈值图像分割中,仿真结果表明改进算法在图像阈值分割中减少阈值的寻优时间,优化收敛精度,提高图像处理的实时性和精度性。 相似文献
15.
16.
Web文档聚类是web数据挖掘的重要任务之一,针对Web文档向量空间的高维性与数据聚类问题的最优化性质,采用LDA对文档向量空间进行降维,提出运用混合优化算法GA_PSO在此低维空间进行寻优,来发现Web文档集的最优簇结构.通过在真实数据集20Newsgroups的实验,结果表明我们的方法具有良好的聚类有效性,能较完全和准确地将主题相关的Web文档聚成一类. 相似文献
17.
18.
19.
通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial Bee Colony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法。在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两个算法寻优后进行比较,选出最优适应值。通过混合算法对4个标准函数进行测试,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。 相似文献