首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel nanocomposite was synthesized using a cathodic, low-potential, electrochemical reduction of H2O2 to homogeneously deposit cobalt oxide/hydroxide (denoted as CoOx·nH2O) nanostructures onto vertically well-aligned multi-walled carbon nanotube arrays (MWCNTs), while the MWCNTs were prepared by catalytic chemical vapor deposition (CVD) on a tantalum (Ta) substrate. The CoOx·nH2O–MWCNTs nanocomposite exhibits much higher electrocatalytic activity towards glucose (Glc) after modification with CoOx·nH2O than before. This non-enzymatic Glc sensor has a high sensitivity (162.8 μA mM−1 cm−2), fast response time (<4 s) and low detection limit (2.0 μM at signal/noise ratio = 3), and a linear dynamic range up to 4.5 mM. The sensor output is stable over 30 days and unaffected by common interferents that co-exist with Glc in analytical samples; it is also resistant to chloride poisoning. These features make the CoOx·nH2O–MWCNTs nanocomposite a promising electrode material for non-enzymatic Glc sensing in routine analysis.  相似文献   

2.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

3.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a CuO/La2O3 composite catalyst at temperatures between 150 and 400 °C. A CuO/La2O3 composite catalyst was prepared by co-precipitation of copper nitrate and lanthanum nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (C0 = 1000 ppm), the space velocity (GHSV = 92,000 l/h), the relative humidity (RH = 12%) and the concentration of oxygen (O2 = 4%) affect the operational stability and the capacity for removing NH3. The catalysts that were characterized using FTIR, XRD, UV-Vis, BET and PSA, have shown that the catalytic behavior is related to the copper (II) oxide, while lanthanum (III) oxide may serve only to provide active sites for the reaction during a catalyzed oxidation run. The experimental results show that the extent of conversion of ammonia by SCO in the presence of the CuO/La2O3 composite catalyst was a function of the molar ratio. The ammonia was removed by oxidation in the absence of CuO/La2O3 composite catalyst, and around 93.0% NH3 reduction was achieved during catalytic oxidation over the CuO/La2O3 (8:2, molar/molar) catalyst at 400 °C with an oxygen content of 4.0%. Moreover, the effect of the reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of under 92,000 h− 1.  相似文献   

4.
In recent years, spinel lithium titanate (Li4Ti5O12) as a superior anode material for energy storage battery has attracted a great deal of attention because of the excellent Li-ion insertion and extraction reversibility. However, the high-rate characteristics of this material should be improved if it is used as an active material in large batteries. One effective way to achieve this is to prepare electrode materials coated with carbon. A Li4Ti5O12/polyacene (PAS) composite were first prepared via an in situ carbonization of phenol-formaldehyde (PF) resin route to form carbon-based composite. The SEM showed that the Li4Ti5O12 particles in the composite were more rounded and smaller than the pristine one. The PAS was uniformly dispersed between the Li4Ti5O12 particles, which improved the electrical contact between the corresponding Li4Ti5O12 particles, and hence the electronic conductivity of composite material. The electronic conductivity of Li4Ti5O12/PAS composite is 10−1 S cm−1, which is much higher than 10−9 S cm−1 of the pristine Li4Ti5O12. High specific capacity, especially better high-rate performance was achieved with this Li4Ti5O12/PAS electrode material. The initial specific capacity of the sample is 144 mAh/g at 3 C, and it is still 126.2 mAh/g after 200 cycles. By increasing the current density, the sample still maintains excellent cycle performance.  相似文献   

5.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

6.
Gold nanoparticles were successfully deposited on FTO/WO3/BiVO4 electrode surface by means of electrolysis of AuCl4 ions. The composite films were characterized by SEM, XPS and XRD techniques. An increase in photocurrent and a negative shift of onset potential for water oxidation were observed upon modification of the electrode surface with the Au particles. The electrochemical impedance spectroscopy was used to confirm the acceleration of charge transfer process by Au deposition at the electrode surface. The photocurrent action spectrum did not correlate with the plasmonic absorbance of Au nanoparticles at 560 nm, suggesting that the Au nanoparticles increased charge separation without undergoing a plasmon resonance effect under visible light irradiation.  相似文献   

7.
Au nanoparticles (AuNPs) are good quenchers once they closely contact with luminophore. Here we reported a simple approach to obtain enhanced electrogenerated chemiluminescence (ECL) behavior based on Au/CdS nanocomposite films by adjusting the amount of AuNPs in the nanocomposite. The maximum enhancement factor of about 4 was obtained at an indium tin oxide (ITO) electrode in the presence of co-reactant H2O2. The mechanism of this enhancement was discussed in detail. The strong ECL emission from Au/CdS nanocomposites film was exploited to determine H2O2. The resulting ECL biosensors showed a linear response to the concentration of H2O2 ranging from 1.0 × 10−8 to 6.6 × 10−4 mol L−1 with a detection limit of 5 nmol L−1 (S/N = 3) and good stability and reproducibility.  相似文献   

8.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

9.
The ac response of polyaniline thin films on platinum electrodes was measured at different dc potentials during the CO2 reduction in methanol/LiClO4 electrolyte with a small amount of 0.5 M H2SO4. The complex capacitance curves were simulated and the data obtained were used to calculate kinetic parameters, based on the assumption that the thermodynamic potential E0 is in the region of −0.2-−0.1 V versus saturated calomel electrode (SCE). With E0=−0.2 V versus SCE and β=0.6, a j0 value of ca. 10−4 A cm−2 was found for the electroreduction of CO2 on the polyaniline electrode.  相似文献   

10.
In this work, bare and Ta-substituted Nb2O5 nanofibers are prepared by electrospinning followed by sintering at temperatures in the 800–1100 °C range for 1 h in air. Obtained bare and Ta-substituted Nb2O5 polymorphs are characterized by X-ray diffraction, scanning electron microscopy, density measurement, and Brunauer, Emmett and Teller surface area. Electrochemical properties are evaluated by cyclic voltammetry and galvanostatic techniques. Cycling performance of Nb2O5 structures prepared at temperature 800 °C, 900 °C, and 1100 °C shows following discharge capacity at the end of 10th cycle: 123, 140, and 164 (±3) mAh g−1, respectively, in the voltage range 1.2–3.0 V and at current rate of 150 mA g−1 (1.5 C rate). Heat treated composite electrode based on M-Nb2O5 (1100 °C) in argon atmosphere at 220 °C, shows an improved discharge capacity of 192 (±3) mAh g−1 at the end of 10th cycle. The discharge capacity of Ta-substituted Nb2O5 prepared at 900 °C and 1100 °C showed a reversible capacity of 150, 202 (±3) mAh g−1, respectively, in the voltage range 1.2–3.0 V and at current rate of 150 mA g−1. Anodic electrochemical properties of M-Nb2O5 deliver a reversible capacity of 382 (±5) mAh g−1 at the end of 25th cycle and Ta-substituted Nb2O5 prepared at 900 °C, 1000 °C and 1100 °C shows a reversible capacity of 205, 130 and 200 (±3) mAh g−1 (at 25th cycle) in the range, 0.005–2.6 V, at current rate of 100 mA g−1.  相似文献   

11.
E. Jin  Lili Cui 《Electrochimica acta》2010,55(24):7230-7234
In this work, graphene/prussian blue (PB) composite nanosheets with good dispersibility in aqueous solutions have been synthesized by mixing ferric-(III) chloride and potassium ferricyanide in the presence of graphene under ambient conditions. Transmission electron microscopy (TEM) shows that the average size of the as-synthesized PB nanoparticles on the surface of graphene nanosheets is about 20 nm. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) patterns have been used to characterize the chemical composition of the obtained graphene/PB composite nanosheets. The graphene/PB composite nanosheets exhibit good electrocatalytic behavior to detection of H2O2 at an applied potential of −0.05 V. The sensor shows a good linear dependence on H2O2 concentration in the range of 0.02-0.2 mM with a sensitivity of 196.6 μA mM−1 cm−2. The detection limit is 1.9 μM at the signal-to-noise ratio of 3. Furthermore, the graphene/PB modified electrode exhibits freedom of interference from other co-existing electroactive species. This work provides a new kind of composite modified electrode for amperometric biosensors.  相似文献   

12.
This work provides kinetic and transport parameters of Li-ion during its extraction/insertion into thin film LiNi0.5Mn1.5O4 free of binder and conductive additive. Thin films of LiNi0.5Mn1.5O4 (0.2 μm thick) were prepared on electronically conductive gold substrate utilizing the electrostatic spray deposition technique. High purity LiNi0.5Mn1.5O4 thin film electrodes were observed with cyclic voltammetry, to exhibit very sharp peaks, high reversibility, and absence of the 4 V signal related to the Mn3+/Mn4+ redox couple. The electrode subjected to 100 CV cycles of charge/discharge delivered a capacity of 155 mAh g−1 on the first cycle and sustained a good cycling behavior while retaining 91% of the initial capacity after 50 cycles. Kinetics and mass-transport of Li-ion extraction at LiNi0.5Mn1.5O4 thin film electrode were investigated by means of electrochemical impedance spectroscopy. The apparent chemical diffusion coefficient (Dapp) value determined from EIS measurements changed depending on the electrode potential in the range of 10−10-10−12 cm2 s−1. The Dapp profile shows two minimums at the potential values close to the peak potentials of the corresponding cyclic voltammogram.  相似文献   

13.
The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on mesoporous Al2O3 (meso-Al2O3) film modified glassy carbon (GC) electrode. Meso-Al2O3 shows significant promotion to the direct electron-transfer of Hb, thus it exhibits a pair of well defined and quasi-reversible peaks with a formal potential of −0.345 V (vs. SCE). The electron-transfer rate constant (ks) is estimated to be 3.17 s−1. The immobilized Hb retains its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H2O2) and nitrite (NO2). Under the optimized experimental conditions, the catalytic currents are linear to the concentrations of H2O2 and NO2 in the ranges of 0.195-20.5 μM and 0.2-10 mM, respectively. The corresponding detection limits are 1.95 × 10−8 M and 3 × 10−5 M (S/N = 3). The resulting protein electrode has high thermal stability and good reproducibility due to the protection effect of meso-Al2O3. Ultraviolet visible (UV-vis) absorption spectra and reflection-absorption infrared (RAIR) spectra display that Hb keeps almost natural structure in the meso-Al2O3 film. The N2 adsorption-desorption experiments show that the pore size of meso-Al2O3 is about 14.4 nm, suiting for the encapsulation of Hb (average size: 5.5 nm) well. Therefore, meso-Al2O3 is an alternative matrix for protein immobilization and biosensor preparation.  相似文献   

14.
A composite lithium battery electrode of LiMn2O4 in combination with a gel electrolyte (1 M LiBF4/24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. −3<T<56 °C. For analysis of EIS data, a mathematical model taking into account local kinetics and potential distribution in the liquid phase within the porous electrode structure was used. Reasonable values of the double-layer capacitance, the exchange-current density and the solid phase diffusion were found as a function of temperature. The apparent activation energy of the charge-transfer (∼65 kJ mol−1), the solid phase transfer (∼45 kJ mol−1) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol−1), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn2O4.  相似文献   

15.
Crystalline CuF2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g−1 was achieved in the potential range of 1.0–4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g−1, which makes CuF2 a potential cathode material for rechargeable lithium batteries.  相似文献   

16.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20–100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1–12). The surface coverages and heterogeneous electron transfer rate constants (ks) of immobilized Mn-complex were approximately 1.58 × 10−10 mole cm−2 and 48.84 s−1. The modified electrode showed excellent electrocatalytic activity toward H2O2 reduction. Detection limit, sensitivity, linear concentration range and kcat for H2O2 were, 0.2 μM and 692 nA μM−1 cm−2, 1 μM to 1.5 mM and 7.96(±0.2) × 103 M−1 s−1, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.  相似文献   

17.
A spinel LiMn2O4/C composite was synthesized by hydrothermally treating a precursor of manganese oxide/carbon (MO/C) composite in 0.1 M LiOH solution at 180 °C for 24 h, where the precursor was prepared by reducing potassium permanganate with acetylene black (AB). The AB in the precursor serves as the reducing agent to synthesize the LiMn2O4 during the hydrothermal process; the excess of AB remains in the hydrothermal product, forming the LiMn2O4/C composite, where the remaining AB helps to improve the electronic conductivity of the composite. The contact between LiMn2O4 and C in our composite is better than that in the physically mixed LiMn2O4/C material. The electrochemical performance of the LiMn2O4/C composite was investigated; the material delivered a high capacity of 83 mAh g−1 and remained 92% of its initial capacity after 200 cycles at a current density of 2 A g−1, indicating its excellent rate capability as well as good cyclic performance.  相似文献   

18.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

19.
Nano-sized Li4Ti5O12 powders with high dispersivity were fabricated by a sol-gel process using P123 as surfactant, which exhibited much better high rate performance towards Li+ insertion/extraction as compared to the densely aggregated Li4Ti5O12 particles although the primary grain sizes of both samples were almost the same. The Li4Ti5O12 electrode prepared from the well-dispersed nanopowders can preserve 88.6% of the capacity at 0.1 A g−1 when being cycled at 1 A g−1, which is obviously higher than that of the densely aggregated sample, in which only 30% capacity can be retained. By improving the dispersivity, the specific surface area of the Li4Ti5O12 nanoparticles, hence the electrode-electrolyte contact area was increased; meanwhile, more homogeneous mixing of the active materials with carbon black was achieved. All these factors might have resulted in the better high rate performance.  相似文献   

20.
The electrochemical reduction of CO2 was studied on a copper mesh electrode in aqueous solutions containing 3 M solutions of KCl, KBr and KI as the electrolytes in a two and three phase configurations. Electrochemical experiments were carried out in a laboratory-made, divided H-type cell. The working electrode was a copper mesh, while the counter and reference electrodes were Pt wire and Ag/AgCl electrode, respectively. Results of our work suggest a reaction mechanism for the electrochemical reduction of CO2 in the two phase configuration where the presence of Cu-X as the catalytic layer facilitates the electron transfer from the electrode to CO2. Electron-transfer to CO2 may occur via the Xad(Br, Cl, I)-C bond, which is formed by the electron flow from the specifically adsorbed halide anion to the vacant orbital of CO2. The stronger the adsorption of the halide anion to the electrode, the more strongly CO2 is restrained, resulting in higher CO2 reduction current. Furthermore, it is suggested that specifically adsorbed halide anions could suppress the adsorption of protons, leading to a higher hydrogen overvoltage. These effects may synergistically mitigate the overpotential necessary for CO2 reduction, and thus increase the rate of electrochemical CO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号