首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Pt/L-zeolite catalysts have a unique activity forn-hexane aromatization to benzene. There have been proposals which attribute this to electronic and to geometric origins of the L-zeolite. Recently, the uniqueness of the L-zeolite support has been understood to derive from the ability to stabilize very small particles in a non-acidic environment and it has been proposed that a further stabilization against deactivation (by geometric constraint of bimolecular coke precursor reactions) is what distinguishes these catalysts relative to SiO2 supported small Pt particles. We have investigated the initial deactivation rate of four Pt/L-zeolite catalysts and a Pt/SiO2 reference during reaction ofn-hexane, neopentane and 2-methyl-2-pentene. In all cases, the relative rates of deactivation correlate with the apparent acidity (as determined by competitive benzene/toluene hydrogenation) suggesting that the deactivation stabilization may have an electronic component.  相似文献   

2.
The catalytic performance of a series of Pt/Al2O3 catalysts, modified with Cr, Mn, Fe, Co, Ni, Cu and Sn, has been tested for the preferential oxidation of CO in hydrogen. The promoters were deposited onto the surface of a 5 wt.% monometallic Pt/Al2O3 catalyst using a controlled surface approach, to give a nominal promoter:Pt surface atomic ratio of 1:2 (corresponding to typically 0.15–0.25 wt.% of the promoting metal). The aim of this approach was to selectively create the Pt-promoter oxide interfacial sites considered to be important for the non-competitive dual-site mechanism proposed for such promoted catalysts. In this mechanism the promoting oxide is believed to act as an active oxygen provider, providing oxygen for the oxidation of the CO on the Pt. The catalysts were characterised using TEM, EDX, ICP-AES and CO chemisorption and results suggest that the promoter was successfully deposited on to the Pt surface. Even at the low loadings of promoter used, significant enhancement was observed in the catalytic performance of the PROX reaction in a simulated reformate mixture, for the Fe- and Co-promoted catalysts in particular (and to a lesser extent the Mn, Sn, Cu- and Ni-promoted catalysts), highlighting the successful preparation of the Pt-promoting metal oxide interfacial sites. The Mn-promoted catalyst, however showed no enhancement in the absence of water suggesting that the form of the promoting metal oxide may be particularly important for promotion of Pt for the PROX reaction.  相似文献   

3.
The catalytic performance in n-butane dehydrogenation of bimetallic PtSn, PtGa and PtIn, and trimetallic PtSnIn and PtSnGa catalysts (with low metal contents) supported on a MgAl2O4 prepared by a novel mechanochemical synthesis was evaluated both in flow and pulse equipment. The influence of the addition of different promoters (Sn, Ga and In) to Pt on the activity, selectivity and deactivation in the n-butane dehydrogenation reaction was studied. Stability experiments through successive reaction-regeneration cycles were carried out for selected catalysts. In order to correlate the properties of the metallic phase of the catalysts with the catalytic behavior, several characterization techniques were used, such as test reactions of the metallic phase (cyclohexane dehydrogenation and cyclopentane hydrogenolysis), TPR, XPS, H2 chemisorption and TEM. Bimetallic PtSn catalyst has a better catalytic behavior than PtIn and PtGa ones. For PtSnM (M: In or Ga) catalysts, whereas Ga addition to the bimetallic catalyst does not practically modify the dehydrogenation performance, the addition of In produces an increase of the activity and the selectivity to butenes. Characterization results indicate the presence of geometric effects for the PtSn catalyst, and geometric and electronic effects for PtIn and PtGa ones. For trimetallic catalysts, the presence of a close contact between Pt, Sn and In or Ga in both trimetallic catalysts was found, mainly due to geometric effects like blocking and dilution of the active sites by the promoters. In stability experiments, the trimetallic PtSnIn/MgAl2O4 catalyst clearly displays the best catalytic performance along reaction-regeneration cycles, though PtSnGa and PtSn catalysts also showed a very good behavior through the successive cycles. The characterization of these catalysts after cycles shows that their metallic phases are slightly modified along the cycles.  相似文献   

4.
A series of Pt catalysts supported on Al2O3 (Pt/A), Al2O3-CeO2 (Pt/A-C), Al2O3-La2O3 (Pt/A-L) and Al2O3-La2O3-CeO2 (Pt/A-L-C) have been prepared and tested in the oxidative reforming of diesel surrogate with the aim of studying the influence of ceria and lanthana additives over the activity and stability toward hydrogen production for fuel cell application. Several characterization techniques, such as adsorption-desorption of N2, X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, H2 chemisorption, and thermogravimetric analysis, have been used to define textural, structural, and surface properties of catalysts and to establish relationships with their behaviour in reaction. This physicochemical characterization has shown that lanthana inhibits the formation of α phase in alumina support and decreases ceria dispersion. Activity results show a better performance of ceria-loaded catalysts, being the Pt/A-C sample the system that offers higher H2 yields after 8 h of reaction. The greater H2 production for ceria-loaded catalysts, particularly in the case of the system Pt/A-C, is attributed to the Pt-Ce interaction that may change the electronic properties and/or the dispersion of active metal phase. Also, the CeIII form of CeIV/CeIII redox pair enhances the adsorption of oxygen and water molecules, thus increasing the catalytic activity and also decreasing coke deposition over surface active Pt phases. Stability tests showed that catalysts in which Pt crystallites are deposited on the alumina substrate covered by a lanthana monolayer, give rise to an increase in stability toward H2 production.  相似文献   

5.
Adsorption of NO, O2 and C3H6 on the MCM-41 matrices with Nb and Zr loaded with Pt has been studied by the FTIR spectroscopy to characterize these materials as catalysts in the selective reduction of NO with propene. Two types of the catalysts have been studied differing by the methods of Zr and Nb introduction: either by one-pot (group 1) or by post-synthesis impregnation (group 2) and hence by the location of Nb and Zr in the framework (group 1) or extra framework (group 2). It has been found that the positions of these metals in the MCM-41 matrix determine the platinum dispersion, acidic–basic properties and influence the interaction of NO + O2 + C3H6 with the catalyst surfaces. The fact that the Pt dispersion is much higher in group 2 materials has been revealed by results of XRD patterns and TEM images. According to the explanation proposed, the presence of Lewis acid–base pairs in the group 2 of catalysts has strongly activated chemisorption of propene, whereas Lewis basicity, characterized by 2-PrOH dehydrogenation on the samples containing transition metals introduced during the synthesis (group 1), has enhanced chemisorption of nitrite species on platinum. It has been proved that nitrite species have not been stored on Pt/Zr/MCM-41 samples, whereas they have been stabilized on Pt/Zr/Nb/MCM-41 containing BrØnsted acidic centres.  相似文献   

6.
The water gas shift (WGS) reaction over Pt and Pd catalysts supported on various perovskite oxides has been investigated at 573 K without catalyst pretreatment. The Pt and Pd catalysts on LaCoO3 support showed high catalytic activity. Interaction between Pt or Pd and the support is considered to promote the WGS reaction: Pt/LaCoO3 had high initial activity but deactivated immediately; Pd/LaCoO3 was less active than Pt/LaCoO3, but had superior stability. Catalysts were characterized using XRD, STEM, XPS, and H2-temperature programmed reduction (TPR). Results of this study showed that reduction of the support decreased the CO conversion on Pt/LaCoO3. On the other hand, Pd/LaCoO3 showed stable activity for the WGS reaction. Therefore, Pd was added to Pt/LaCoO3 for stabilizing the catalyst activity, and 0.5 wt.% Pd/1 wt.% Pt/LaCoO3 catalyst showed higher activity and stability.  相似文献   

7.
The selective catalytic reduction of NO by propene in the presence of excess oxygen has been studied over catalysts based on Co-Pt supported on ZSM-5. Pure Pt based catalysts are highly active, but produce large amounts of N2O. Bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt.%) show a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. The lower selectivity to N2O is attributed to its selective conversion over Co. The catalysts also showed high water and sulfur tolerance above 350°C.  相似文献   

8.
This work is aimed at evaluating the performance of several catalysts in the partial hydrogenation of sunflower oil. The catalysts are composed of noble (Pd and Pt) and base metals (Ni, Co and Cu), supported on both silica and alumina. The following order can be proposed for the effect of the metal on the hydrogenation activity: Pd > Pt > Ni > Co > Cu. At a target iodine value of 70 (a typical value for oleomargarine), the production of trans isomers is minimum for supported nickel catalysts (25.7–32.4 %, depending on the operating conditions). Regarding the effect of the support, Al2O3 allows for more active catalysts based on noble metals (Pd and Pt) and Co, the effect being much more pronounced for Pt. Binary mixtures of catalysts have been studied, in order to strike a balance between catalyst activity and product distribution. The results evidence that Pd/Al2O3–Co/SiO2 mixture has a good balance between activity and selectivity, and leads to a very low production of trans isomers (11.8 %) and a moderate amount of saturated stearic acid (13.5 %). Consequently, the utilization of cobalt‐based catalysts (or the addition of cobalt to other metallic catalysts) could be considered a promising alternative for the hydrogenation of edible oil.  相似文献   

9.
The nanostructured platinum–bismuth catalysts supported on carbon (Pt3Bi/C, PtBi/C and PtBi3/C) were synthesised by reducing the aqueous metal ions using sodium borohydride (NaBH4) in presence of a microemulsion. The amount of metal loading on carbon support was found to be 10 wt.‐%. The catalyst materials were characterised by X‐ray diffraction (XRD), X‐ray fluorescence (XRF), transmission electron microscope (TEM) and electroanalytical techniques. The Pt3Bi/C, PtBi/C and PtBi3/C catalysts showed higher methanol tolerance, catalytic activity for oxygen reduction reaction (ORR) than Pt/C of same metal loading. The electrochemical stability of these nano‐sized catalyst materials for methanol tolerance was investigated by repetitive cycling in the potential range of –250 to 150 mVMSE. Bi presents an interesting system to have a control over the activity of the surface for MOR and ORR. All Pt–Bi/C catalysts exhibited higher mass activities for oxygen reduction (1–1.5 times) than Pt/C. It was found that PtBi/C catalyst exhibits better methanol‐tolerance than the other catalysts.  相似文献   

10.
Selective liquid phase hydrogenation of cinnamaldehyde is reported, for the first time, over CeO2, ZrO2, and CeO2–ZrO2-supported Pt catalysts. Cinnamyl alcohol is the selective product. These catalysts are highly active and selective even at 25 °C and found to be superior to most of the hitherto known supported Pt catalysts. Alkali addition (NaOH) has enhanced the performance of these catalysts. At an optimized reaction condition, 95.8% conversion of cinnamaldehyde and 93.4% selectivity of cinnamyl alcohol have been obtained. Acidity of the support (due to the presence of ZrO2 component) and higher electron density at Pt (due to CeO2 component) are attributed to be responsible for the superior catalytic activity of Pt supported on CeO2–ZrO2 composite material.  相似文献   

11.
Aqueous phase reforming (APR) of ethanol has been studied over a series of Ru and Pt catalysts supported on carbon and titania, with different metal loadings and particle sizes. This study proposed that, on both metals, ethanol is first dehydrogenated to acetaldehyde, which subsequently undergoes C C cleavage followed by different paths, depending on the catalyst used. For instance, although monometallic Pt has high selectivity toward H2 via dehydrogenation, it has a low efficiency for C C cleavage, lowering the overall H2 yield. Large Ru particles produce CH4 through methanation, which is undesirable because it consumes H2. Small Ru particles have lower activity but higher selectivity toward H2 rather than CH4. On these small particles, CO blocks low-coordination sites, inhibiting methanation. The combination of the two metals in bimetallic Ru–Pt catalysts results in improved performance, benefiting from the desirable properties of each Ru and Pt, without the negative effects of either. © 2018 American Institute of Chemical Engineers AIChE J, 65: 151–160, 2019  相似文献   

12.
Pt catalysts supported on Al2O3 beads prepared by a sputter deposition method showed the higher surface concentration of Pt than impregnated Pt catalysts. The catalytic activities of the oxidation of acetylene carbon black over the sputtered Pt catalysts were higher than those over the impregnated Pt catalysts with the same Pt content.  相似文献   

13.
This paper is concerned with the study of size effects in reactions of low-temperature CO oxidation on the catalysts Au/γ-Al2O3 and Au/δ-Al2O3 and complete oxidation of methane on the catalysts Pt/γ-Al2O3. For the synthesis of gold catalysts, four techniques have been applied: ionic adsorption, deposition-precipitation, chemical liquid-phase grafting, and decomposition of volatile gold complexes. Platinum catalysts have been prepared by aluminum oxide impregnation with aqueous solutions of H2[Pt(OH)6] that, depending on preparation conditions, contained mono- or oligonuclear hydroxocomplexes of platinum. Series of catalyst samples with a narrow size distribution of particles and a mean size variation from 0.5–1 to 20–25 nm have been prepared. The study of the catalytic properties of the prepared catalysts has shown that a decrease in mean size of supported metal particles leads to a sharp increase in specific catalytic activity in both systems. The activity maximum has been achieved for active component particles of 2–3 nm. A conclusion has been made that the application of nanosize catalysts is promising for the cleaning of air in closed rooms and vehicle exhaust gases from CO, for the utilization of methane, and for the obtaining of energy by the combustion of natural gas.  相似文献   

14.
The direct catalytic conversion of alkanes into aromatics has found potentially important industrial applications. Initially only alkanes with 6 and more carbon atoms in the chain were concerned. Supported platinum catalysts were found active for the aromatization of alkanes; the drawbacks of these catalysts were their deactivation with time on stream and the existence of simultaneous parallel reactions. Much discussion has been published on the aromatization of C6+ alkanes. A bifunctional mechanism which involves both the metal and the acid sites of the support and a monofunctional mechanism involving only the metallic sites operate over, respectively, Pt supported on acidic support and Pt supported on nonacidic support. In the present review the mechanisms proposed for the aromatization of alkanes are described. Over monofunctional Pt catalysts two possible mechanisms prevail: 1,6 ring closure on the Pt surface involving primary and secondary C-H bond rupture, followed by dehydrogenation of the cycloalkanes into aromatics (1,5 ring closure to a lesser extent also contributes to aromatic production); or dehydrogenation of the alkanes into olefins, dienes, and trienes followed by thermal ring closure. Zeolites were found most suitable as support for preparing catalysts more active and more selective in the alkane aromatization. In addition catalysts based on noble metals supported on zeolite appeared more resistant against deactivation by coke. In this review the aromatization of hexane, heptane, and octane over Pt-zeolite catalysts is discussed in detail. Comparisons between different zeolite structures and different dehydrogenation sites are given. In particular a critical analysis of the results and interpretation concerning Pt-KL catalysts strongly suggests that the exceptional high selectivity towards aromatization of n-hexane exhibited by Pt-KL could not be explained by only the nest or constraint effect exerted by the channel dimension and morphology, not by only the terminal cracking properties, not by only the partial electron transfer from the zeolite support to the Pt particles, and not by only the Pt particle size. Zeolite structure also affects the aromatic product distribution, in particular when the alkane contains more than 7 carbon atoms. It is shown how Pt on medium-pore zeolites such as In-ZSM-5, silicalites will favor the aromatization of C8 alkane isomers into ethylbenzene-styrene with respect to other C8 aromatics. Aromatization of light alkanes, C2-C5, requires the increase of the hydrocarbon chain length up to 6 carbon atoms and higher, followed by cyclization reaction. Recently new processes to convert C2-C5 alkanes into aromatics have been disclosed, M2-forming from Mobil, Cyclar from BP-UOP, and Aroforming from IFP-Saluted. In general these processes use bifunctional catalysts possessing a dehydrogenating and an acid function. The catalysts consist of a metal ion or metal oxide supported on a microporous acid solid. In this review we analyze the results concerning mainly platinum supported on pentasil-type zeolite. It is shown that althoug Pt has better dehydrogenating properties as compared with gallium and zinc, the efficiency of catalysts based on Pt-ZSM-5 for light alkane aromatization is less because undersirable reactions such as hydrogenolysis and ethene (olefins) hydrogenation occur on the platinum surface, resulting in the production of unreactive alkanes, CH2, C2H6. These drawbacks could be partially suppressed by alloying Pt and by increasing the reaction temperature.  相似文献   

15.
Dendrimer encapsulated Pt nanoparticles were prepared by using hydroxyl terminated generation four (G4OH) PAMAM dendrimers (DEN) as the templating agents. The encapsulated Pt nanoparticles were dispersed on γ-Al2O3 at room temperature by impregnation. Pt/Al2O3 (DEN) catalysts were then subjected to thermal treatments in oxidizing and reducing atmospheres at different temperatures. These catalysts were characterized by Transmission Electron microscopy (TEM) and In situ Fourier-Transform Infrared (FTIR) spectroscopy. The TEM analysis of the as synthesized catalysts revealed that the Pt nanoparticles were found to be 2–4 nm in size. It is observed that the Pt particle size in 0.5% Pt/Al2O3 (DEN) catalyst increased upon thermal decomposition of the dendrimer. The in situ FTIR results suggested that the presence of oxygen and the Pt nanoparticles in the Pt-dendrimer nanocomposite accelerate the dendrimer decomposition at low temperatures. All the catalysts were tested for the reduction of NO x with CH4 in the temperature range of 250–500 °C. NO x reduction efficiency of Pt/Al2O3 (DEN) catalysts were compared with the Pt/Al2O3 (CON; conventional) catalyst. The conversion of NO x was started from the low temperatures over Pt/Al2O3 (DEN) catalysts. The high selectivity of NO x to N2 of 74% was obtained over 0.5% Pt/Al2O3 (DEN) catalyst at low temperatures around 350 °C.  相似文献   

16.
Screening of bifunctional water-gas shift catalysts   总被引:1,自引:0,他引:1  
A large number of different formulations have been recently proposed in the literature as new catalysts for the water-gas shift (WGS) reaction. These formulations typically consist of a metal deposited on a reducible support. As these catalysts have been synthesized and tested by different groups in different operating conditions, a true comparison of their activities is not really possible. The aim of this study is to screen these samples under identical conditions using a model reformate as reaction mixture. A commercial parallel reactor has been used for this task. Comparison of the data obtained for the Pt catalysts from the parallel reactor with those obtained from a single fixed bed reactor showed deviations of 20–30% in the kinetic parameters. Rh and Ru based catalysts produced significant amounts of methane. Pt/CeO2/Al2O3 and Pt/TiO2 were found to be the most active catalysts for the high temperature water-gas shift while gold and copper catalysts showed promising results for low temperature applications, but they require testing at lower CO partial pressures.  相似文献   

17.
Intrinsic catalytic activities (TOF values) in CH4 complete oxidation under lean conditions were estimated as a function of Pt and Pd particle sizes (dm) for two series of Pt/Al2O3 and Pd/Al2O3 catalysts. Comparison of TOF ~ f(dm) relationships revealed significant difference between Pt and Pd catalysts. For Pt catalyst TOF showed tendency to increase by 2–3 times with increasing particle size from 1 to ca 3 nm and remained constant, when Pt particles became larger than 3 nm. On the other hand, for Pd catalyst TOF increased almost linearly when particle size grew from 1 to 20 nm. These different tendencies were attributed to the different mechanisms of CH4 oxidation over Pt and Pd catalysts: Langmuir–Hinshelwood and Mars-Van Krevelen respectively.  相似文献   

18.
Ethylene decomposition was performed over supported Pt catalysts to fabricate composites of Pt metal nanoparticles and carbon nanotubes (CNTs). All supported Pt catalysts (Pt/carbon black, Pt/CNT, Pt/MgO, Pt/Al2O3 and Pt/SiO2) showed catalytic activity for ethylene decomposition at 973 K to form CNTs. Pt metal particles were found at tips of CNTs. These results indicate that Pt metal particles have catalytic activity for growth of CNTs through hydrocarbon decomposition. A broad range (5-50 nm) of CNT diameters were formed from the use of supported Pt metal catalysts although Pt metal particles in the catalysts before ethylene decomposition were relatively uniform in size (2-5 nm). These results imply that Pt metal particles in the catalysts aggregated during ethylene decomposition at 973 K. Aggregation of Pt metal particles in catalysts during ethylene decomposition could be suppressed by covering catalysts with silica layers that were a few nanometers thick. Silica-coated Pt catalysts showed high activity for ethylene decomposition to form CNTs with uniform diameters (8-10 nm) despite the uniform coverage of Pt metal particles with silica layers.  相似文献   

19.
A comparison between the characteristics of the metallic phase (studied by FTIR and XPS) of Pt and PtSn catalysts supported on Al2O3, K-doped Al2O3 and MgO (used for light paraffins dehydrogenation reactions) is reported in this paper. The beneficial effects produced by tin addition to platinum, both in the increase of the selectivity to propene and the low coke formation, would be related with the possible electronic modifications of Pt by Sn, with probable formation of alloys, mainly for Al2O3 and MgO supported bimetallic catalysts. On the other hand, the modification of the electronic state of Pt by Sn addition appears to be of a minor importance in bimetallic catalysts supported on K-doped Al2O3.  相似文献   

20.
MgAPO-11 molecular sieves with varying Mg contents synthesized by the hydrothermal method were used as supports for bifunctional Pt/MgAPO-11 catalysts. MgAPO-11 molecular sieves and the corresponding catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), temperature-programmed desorption of NH3 (NH3-TPD), differential thermogravimetric (DTG) analysis, temperature-programmed reduction of H2 (H2-TPR), H2 chemisorption and catalytic reaction evaluation. The results indicated that the acidity generated via the substitution of Mg2+ for Al3+ in the framework increased with the Mg content. Acting as acidic components, the MgAPO-11 molecular sieves loaded with Pt were tested in the hydroisomerization of n-dodecane. Optimum isomer yield was obtained over the Pt/MgAPO-11 catalyst that had neither the highest acidity nor the highest Pt loading among the tested catalysts. In fact, the activity and the isomer yield both could attain a maximum on 0.5 wt.% Pt/MgAPO-11 catalysts with differing Mg contents. A lower Mg content resulted in an insufficient acidity, whilst a higher Mg content weakened the dehydrogenation/hydrogenation function of the Pt. These inappropriate balances between the acidic and the metallic functions of the catalysts would lead to low activities and isomer yields. On the other hand, the 0.5 wt.% Pt/MgAPO-11(3) catalyst was found to have a good balance between the acidic and the metallic functions, and thus exhibited both high activity and isomer yield in comparison with the conventional 0.5 wt.% Pt/SAPO-11 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号