首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.  相似文献   

2.
The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.  相似文献   

3.
The feasibility of immobilizing zinc in contaminated soil was investigated by observing the role of zinc reacting with aluminum-rich materials under thermal conditions. To observe the process of zinc incorporation, mixtures of ZnO with alumina precursors (γ-Al(2)O(3) and α-Al(2)O(3)) were fired at 750-1450 °C. Both precursors crystallochemically incorporated zinc into the ZnAl(2)O(4) spinel structure. The incorporation efficiencies of a 3 h sintering scheme were first quantitatively determined by Rietveld refinement analysis of X-ray diffraction data. Different zinc incorporation behavior by these two precursors was revealed, although both resulted in nearly 100% transformation at the highest temperature. Different product microstructures and thermal densification effects were found by observing the sintered products from these two precursors. The leaching performances of ZnO and ZnAl(2)O(4) were compared by a prolonged acid leaching test for 22 d. The leachability analysis pointed to superiority of the ZnAl(2)O(4) structure in stabilizing zinc, suggesting a promising technique for incorporating zinc into the aluminum-rich product. Finally, the sludge collected from water treatment works was calcined and used as an aluminum-rich material to test its ability to stabilize zinc. Successful formation of ZnAl(2)O(4) indicated good potential for employing waterworks sludge to thermally immobilize hazardous metals as a promising waste-to-resource strategy.  相似文献   

4.
Starch consolidation casting (SCC) is a versatile and well established process for shaping ceramic green bodies by casting starch‐containing suspensions into impermeable molds. The process is based on the ability of starch to swell and absorb water from aqueous ceramic suspensions after heating to approx. 80°C. The swelling factor is highest for potato starch (3.7) and significantly lower for the other starch types (down to approx. 2). A simple mathematical model is presented that allows the minimum consolidation time to be estimated on the basis of the swelling kinetics of starch granules as measured via laser diffraction. The critical temperature range for starch burnout before sintering the ceramic is 300–500°C, as determined by thermal analysis (thermogravimetry and differential thermal analysis). In this temperature range gaseous products may ignite, leading to strongly exothermic thermal effects. If the bodies are large and the starch content high this may lead to defects in the (still unsintered) ceramic green bodies. Therefore this temperature range has to be carefully controlled in the production of ceramics prepared by SCC. The residual pores (remaining after starch burnout) are too large to be closed during the firing step (insufficient driving force for sintering due to too low surface curvature). Therefore they do not contribute to shrinkage, and shrinkage is determined by the ceramic matrix alone. Porosities higher than 50% (corresponding to the maximum nominal starch content) may be obtained by combining SCC with partial sintering (resulting in porosities up to 70%).  相似文献   

5.
The upflow anaerobic sludge blanket (UASB) method has been developed as an efficient anaerobic wastewater treatment process; however, the performance of this process in the removal nitrogenous compounds and phosphate is not high. Here, we present the water treatment performance of a lighted upflow anaerobic sludge blanket (LUASB) reactor and propose a novel LUASB concept. A population of phototrophic bacteria was induced from UASB granules under light conditions (100 microE x m(-2) x s(-1)). The ammonium and phosphate ion removal efficiencies of the LUASB reactor were higher than those of a UASB reactor. The difference in the results from runs under light and dark conditions suggests that the efficiencies of ammonium and phosphate ion removal were improved by an increase in the phototrophic bacteria in the LUASB reactor. The UASB granule can decompose a variety of organic substances; therefore, the LUASB method could also be effective for producing phototrophic bacterial biomass and polyhydroxyalkanoates (PHAs) from various wastewaters.  相似文献   

6.
A swim-bed reactor using the biofringe acryl-fiber biomass carrier was used for partial nitritation treatment for anaerobic digestion liquor of swine wastewater. The sludge in the reactor demonstrated excellent settling properties, and the sludge volumetric index (SVI) was always about 50 ml g(-1). The mixed liquor suspended solids (MLSS) concentration was maintained above 10,000 mg l(-1) with a maximum of 16,800 mg l(-1). Satisfactory and stable partial nitritation was obtained at a nitrogen loading rate (NLR) of 1.9 kg-N m(-3) d(-1) without any operational control. Only a little nitrate was produced almost during the whole operational period and the nitrite to total oxidized nitrogen ratio (NO(2)-N/(NO(2)-N+NO(3)-N)) was always above 95%. In addition, the influence of temperature on partial nitritation efficiencies was also investigated and non-controlled efficiencies were maintained stably between 15 degrees C and 30 degrees C at an NLR of 1.9 kg-N m(-3) d(-1), but suddenly deteriorated when the temperature fell below 15 degrees C. Nitrite oxidizing bacteria were inhibited by free ammonia and free nitric acid, which prevented the conversion of nitrite to nitrate and the inhibition due to free nitric acid weaken with a decrease in temperature. It was apparent that these phenomena were crucial to the control of partial nitritation treatment.  相似文献   

7.
Dried sewage sludge was physically mixed with waste paper (paper-to-sludge ratios from 25% to 75%). To increase the catalytic activity, from 1% to 6% calcium hydroxide was added to the mixtures. Then the precursors were carbonized at 950 degrees C. The performance of materials as H2S adsorbents was tested using a home-developed dynamic breakthrough test. The samples, before and after the adsorption process, were characterized by adsorption of nitrogen, potentiometric titration, thermal analysis, XRF, and SEM. Differences in the performance were linked to the surface properties. Itwas found that mixing paper with sludge increases the amount of H2S adsorbed/oxidized in comparison with that adsorbed/oxidized by the adsorbents obtained from pure precursors (sludge or waste paper) and the capacity is comparable to those of the best activated carbons existing on the market. Although both sewage sludge and waste paper provide the catalytic centers for hydrogen sulfide oxidation, the dispersion of the catalyst and its location within accessible pores is an important factor. The presence of cellulose in the precursor mixture leads to the formation of a light macroporous char whose particles physically separate the inorganic catalytic phase of the sewage sludge origin, decreasing the density of the adsorbent and thus providing more space for storage of oxidation products. This, along with calcium, contributes to a significant increase in the capacity of the materials as hydrogen sulfide adsorbents. On their surface about 30 wt % H2S can be adsorbed, mainly as elemental sulfur or sulfates. The results demonstrate the importance of the composition and arrangement of inorganic/ organic phases for the removal of hydrogen sulfide. The interesting finding is that although some microporosity is necessary to increase the storage area for oxidation products, the carbonaceous phase does not need to be highly microporous. It is important that it provides space for deposition of sulfur, which is formed on the inorganic-phase catalyst. That space can be in meso- and macropores as shown in the case of char derived from the waste paper.  相似文献   

8.
We investigated the performance of a lighted upflow anaerobic sludge blanket (LUASB) reactor for wastewater treatment and poly-beta-hydroxybutyrate (PHB) production. Phototrophic bacteria were induced from UASB (upflow anaerobic sludge blanket) granules under light conditions (100 microE.m(-2).s(-1)). The ammonium and phosphate ion removal efficiencies of the LUASB reactor were higher than those of the UASB reactor. The difference in the results from runs under light and dark conditions suggested that the ammonium and phosphate ion removal efficiencies were improved by increasing the amount of phototrophic bacteria in the LUASB reactor. The average production rate of PHB from the biomass in the effluent from the LUASB reactor was 6.6-14.0 mg.l(-1)-reactor.d(-1) using acetate-based media and the average PHB content based on the dry bacterial biomass was 15.1-25.3%. The PHB concentration increased by reincubation of the effluent from the LUASB reactor with sodium acetate under light conditions. The UASB granular sludge can decompose a variety of organic substances and in addition the LUASB method can remove ammonium and phosphate ions. The LUASB method thus appears to be appropriate for wastewater treatment and production of phototrophic bacteria and PHB from various wastewaters.  相似文献   

9.
研究了Fe3+存在下处理制浆中段废水的好氧活性污泥的驯化过程。首先通过Fe3+对微生物生长曲线的影响确定Fe3+最佳用量为30 mg/L;然后在Fe3+用量为30 mg/L下,采用制浆中段废水对好氧活性污泥进行驯化,并设置不加Fe3+的空白组对照。结果表明,整个驯化过程中,加Fe3+组CODCr去除率和污染物去除率(以UV-254减少率表示)均高于空白组;驯化结束后,加Fe3+组和空白组CODCr去除率分别达78.2%和76.0%,污染物去除率分别为50.0%和37.7%。通过对脱氢酶活性的分析表明,加Fe3+组活性高于空白组。  相似文献   

10.
王仲军 《中国皮革》2006,35(11):32-33
利用普通粘土、制革污泥和钢铁厂碱性熔渣,研制成陶瓷试样,既解决了制革污泥和钢铁厂碱性熔渣对环境造成污染的问题,又使其得到综合利用,是一种处理制革污泥的新方法。  相似文献   

11.
This study illustrates a potential method for reducing PAH emissions from the incineration of biological sludge by adding a suitable and available waste as a co-fuel. The whole study was conducted on a full-scale fluidized-bed incinerator operated by a terephthalic acid (TPA) manufacturing plant for disposing of biological sludge. Two incinerating conditions were studied, one directly incinerating biological sludge (the normal incinerating condition), and the other adding the waste TPA as a co-fuel during the biological sludge incineration process (the trial incinerating condition). Both incinerating conditions used heavy oil as auxiliary fuel. Although the former had a higher heavy oil consumption rate than the latter, both had comparable combustion efficiencies. Results show that the total PAH input mass rate for the former was only 2.35 times higher than the latter, but the total PAH emission factor for the former was 6.52 times higher than the latter. Total PAH output/input mass ratios for both incinerating conditions were lower than unity, but the value for the normal incinerating condition was approximately 2.91 times higher than the trial condition. In conclusion, the use of waste TPA as a co-fuel not only saved the consumption of heavy oil but also reduced PAH emissions during the combustion process.  相似文献   

12.
梁列峰  翁杰 《纺织学报》2005,26(4):14-16
生物活性陶瓷纤维在组织工程领域有着广泛需求。借助于蚕丝纤维的物理化学性质,采用溶胶凝胶法制备羟基磷灰石浆料,使其粘附于经过系列处理的蚕丝纤维上并固化,通过合理地设计陶瓷烧结工艺,制备出具有较好取向度的生物活性磷酸钙陶瓷纤维。  相似文献   

13.
利用构建的优势降解菌群强化好氧颗粒污泥,提高制浆造纸废水的降解效果,在厌氧处理的基础上,原始好氧污泥处理后,废水COD由629 mg/L降至203mg/L,废水色度由118 C.U.降至91 C.U.;而强化好氧污泥处理后,废水COD由629mg/L降至146mg/L,废水色度由118 C.U降至72 C.U.。并研究了好氧处理阶段的微生物过程反应动力学以及制浆废水COD降解动力学,建立了该处理阶段废水COD降解的动力学模型。  相似文献   

14.
Thermochemical liquidization as a pretreatment for anaerobic digestion of food waste was studied using a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor for a period of 82 d. Model food waste (approximately 90 wt% moisture content) was thermochemically liquidized at 175 degrees C for 1 h. The liquidized food waste was separated into a solid phase (6-10 wt%) and a liquid phase (85-89 wt%). The diluted liquid phase was continuously treated by anaerobic digestion using a UASB reactor at 35 degrees C. The volumetric loading rate was increased stepwise to 6.4-7.2 g total organic carbon (TOC)/l-reactor/d. Methane production was found to be approximately 0.35-0.61 l/g-TOC removed. The range of TOC removal efficiencies was 67-69% at an influent TOC concentration of 10.1-11.1 g/l and a volumetric loading rate of 4.8-5.3 g-TOC/l-reactor/d. This treatment process using an UASB reactor could be suitable for resource recovery from food waste.  相似文献   

15.
The objective of this work was to compare two anaerobic reactor configurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1—E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2—E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.  相似文献   

16.
Wastewater biological nutrient removal (BNR) by short-cut nitrification-denitrification (SCND) and denitrifying phosphorus removal via nitrite (DPRN) has several advantages, such as organic carbon source saving. In this paper, a new method, i.e., by using waste activated sludge alkaline fermentation liquid as BNR carbon source, for simultaneously improving SCND and DPRN was reported. First, the performance of SCND and DPRN with sludge fermentation liquid as carbon source was compared with acetic acid, which was commonly used in literatures. Sludge fermentation liquid showed much higher nitrite accumulation during aerobic nitrification than acetic acid (81.8% versus 40.9%), and the former had significant anoxic denitrification and phosphorus uptake. The soluble phosphorus and total nitrogen removal efficiencies with sludge fermentation liquid were much higher than with acetic acid (97.6% against 73.4% and 98.7% versus 79.2%). Then the mechanisms for sludge fermentation liquid showed higher SCND and DPRN than acetic acid were investigated from the aspects of wastewater composition, microorganisms assayed by 16S rRNA gene clone library, and fluorescence in situ hybridization. More NO(2)(-)-N accumulated by the use of sludge fermentation liquid was attributed to be more humic acids in the influent, which inhibited nitrite oxidizing bacteria (NOB) more serious than ammonia oxidizing bacteria (AOB), and more AOB but less NOB were observed in the BNR system. The reasons for sludge fermentation liquid BNR system exhibiting greater short-cut denitrifying phosphorus removal were that there were less glycogen accumulating organisms and more phosphorus accumulating organisms and anoxic denitrifying phosphorus removal bacteria with higher nitrite reductase activity.  相似文献   

17.
We investigated the possibility of conjugative plasmid transfer to the predominant bacteria in activated sludge and the factors influencing the transfer frequency in the activated sludge process. We performed conjugative transfers of a self-transmissible, broad-host-range plasmid RP4 from Escherichia coli C600 to activated sludge bacteria by broth mating. Most of the activated sludge bacteria tested could acquire plasmid RP4, although the transfer frequencies varied from 8.8 x 10(-7) to 1.3 x 10(-2) transconjugants per recipient. The transfer frequencies in several strains were similar to, or higher than, that in intraspecific transfer to E. coli HB101. Matings under various environmental conditions showed that factors relevant to physiological activity, such as temperature and nutrient conditions, seemed to affect the transfer frequency. In addition, conjugative transfer was detected even in filtered raw and treated wastewaters. Thus, the predominant activated sludge bacteria seem to have sufficient potential as recipients in conjugative plasmid transfer under the conditions likely to occur in the activated sludge process. Transfer frequency was reduced by agitation in the presence of suspended solid. This may suggest that conjugative plasmid transfer is physically inhibited in aeration tanks.  相似文献   

18.
Aerobic granules were cultivated in a sequencing batch reactor (SBR) fed with soybean-processing wastewater at 25+/-1 degrees C and pH 7.0+/-0.1. The granulation process was described via measuring the increase of sludge size. The formation of granules was found to be a four-phase process, that is, acclimating, shaping, developing, and maturated. A modified Logistic model could well fit with the granule growth by diameter and could be employed to estimate the maximum diameter, lag time, and specific diameter growth rate effectively. Both normal and log-normal distributions proved to be applicable to model the diameter distribution of the granules. The granule-containing liquor was shear thinning, and their rheological characteristics could be described by using the Herschel-Buckley equation. The suspended solids concentration, pH, temperature, diameter, settling velocity, specific gravity, and sludge volume index all had an effect on the apparent viscosity of the mixed liquor of granules. The matured granules had fractal nature with a fractal dimension of 1.87+/-0.34. Moreover, 83% of matured granules were permeable with fluid collection efficiencies over 0.034. As compared to activated sludge flocs, the aerobic granules grown on the soybean-processing wastewater had better settling ability, mass transfer efficiency, and bioactivity.  相似文献   

19.
For co-digestion of waste activated sludge with kitchen garbage, hyperthermophilic digester systems that consisted of an acidogenic reactor operated at hyperthermophilic (70 °C) and a methanogenic reactor operated at mesophilic (35 °C), thermophilic (55 °C) or hyperthermophilic (65 °C) conditions in series were studied by comparing with a thermophilic digester system that consisted of thermophilic (55 °C) acidogenic and methanogenic reactors. Laboratory scale reactors were operated continuously fed with a substrate blend composed of concentrated waste activated sludge and artificial kitchen garbage. At the acidogenic reactor, solubilization efficiencies of chemical oxygen demand (COD), carbohydrate and protein at 70 °C were about 39%, 42% and 54%, respectively, and they were higher than those at 55 °C by around 10%. The system of acidogenesis at 70 °C and methanogenesis at 55 °C was stable and well-functioned in terms of treatment performances and low ammonium nitrogen concentrations. Microbial community analysis was conducted using a molecular biological method. The key microbe determined at the hyperthermophilic acidogenesis step was Coprothermobacter sp., which was possibly concerned with the degradation of protein in waste activated sludge. The present study proved that the hyperthermophilic system was advantageous for treating substrate blends containing high concentrations of waste activated sludge.  相似文献   

20.
Wheat and corn starch can be used for the preparation of porous alumina ceramics via the SCC (starch consolidation casting) process, resulting in porosities ranging from > 20% to approx. 50% (using nominal starch contents of 10 – 50%, v/v), with open porosity dominating (closed porosity < 6.5%). The character of porosity and the shape of the pores corresponds to the starch granules used, but the pore size is determined by a complex interplay between starch swelling (during the body‐forming step) and pore shrinkage (during sintering of the ceramic). Typically, for low starch contents (e.g. nominal starch contents of around 10%, v/v) starch swelling is a significant effect, and the pores after sintering are larger than the size of the starch granules. For higher starch contents swelling is constrained (by limited space and/ or water availability), and the matrix shrinkage during sintering overcompensates the swelling effect, so that the final pores in the ceramic can be significantly smaller than the original starch granule size. In this paper it is shown how porosity is related to pore size. In particular, it is demonstrated that the porosity indirectly determined from image analysis (via the median pore size) is closely related to the porosity directly measured via the Archimedes method. On the other hand, mercury porosimetry measures the distribution of pore throat sizes. With increasing starch content in the suspension, the pore throat size in the as‐fired ceramic materials increases, resulting in a more open microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号