首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green synthesis of silver nanoparticles (AgNPs) was accomplished using different volumes of cauliflower extract and 0.001 M silver nitrate solution at 80°C for 15 min. A brownish‐red solution of AgNPs formed was tested by ultraviolet–visible absorption spectroscopy, Fourier‐transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). Surface plasmon resonance of AgNPs appeared at 416 nm. Also, the kinetic of AgNPs formation was studied and follows a sigmoidal pattern. Storing time was studied for the freshly prepared AgNPs after 60 days. FTIR analysis shows the adsorption of active components on AgNPs surface, and these components are responsible for reduction besides working as a stabiliser like a capping agent, also FTIR analysis of AgNPs after storage showed no change in peaks location. The SEM exhibited a globular shape of AgNPs, and the particle size ranged from 25 to 100 nm, while the XRD particle size calculation was 25 nm with cubic phase lattice. The antibacterial activity was tested against Gram‐positive and ‐negative bacteria showed an inhibition zone of 16–27 mm and the antibacterial activity tested for the same bacteria after storage for about 10 months showed an inhibition zone of 6–10 mm.Inspec keywords: microorganisms, reduction (chemical), nanofabrication, surface plasmon resonance, silver, transmission electron microscopy, nanoparticles, particle size, visible spectra, ultraviolet spectra, adsorption, antibacterial activity, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, nanomedicineOther keywords: antibacterial activity, green synthesis, silver nanoparticle, brownish‐red solution, surface plasmon resonance, FTIR analysis, active components, silver nitrate solution, ultraviolet‐visible absorption spectroscopy, AgNP surface, cauliflower extract, Fourier‐transform infrared spectroscopy, scanning electron microscopy, SEM, X‐ray diffraction, XRD, sigmoidal pattern, storing time, adsorption, stabiliser, capping agent, globular shape, particle size, cubic phase lattice, Gram‐positive bacteria, Gram‐negative bacteria, inhibition zone, reduction, time 60.0 d, temperature 80.0 degC, time 15.0 min, wavelength 416.0 nm, Ag  相似文献   

2.
Green synthesis of nanoparticles has gained importance due to its eco‐friendly, low toxicity and cost effective nature. This study deals with the biosynthesis of silver nanoparticles (AgNPs) from the bark extract of Amentotaxus assamica. The AgNPs have been synthesised by reducing the silver ions into stable AgNPs using the bark extract of Amentotaxus assamica under the influence of sunlight irradiation. The characterisation of the biosynthesised AgNPs was carried out by UV–vis spectroscopy, X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray analysis. The UV–vis spectrum showed a broad peak at 472 nm. Also, the XRD confirmed the crystalline structure of the AgNPs. Moreover, the SEM analysis revealed that the biosynthesised AgNPs were spherical in shape. Also, dynamic light scattering techniques were used to evaluate the size distribution profile of the biosynthesised AgNPs. Furthermore, the biosynthesised AgNPs showed a prominent inhibitory effect against both Escherichia coli (MTCC 111) and Staphylococcus aureus (MTCC 97). Thus the biosynthesis of AgNPs from the bark extract of Amentotaxus assamica is found to eco‐friendly way of producing AgNPs compared to chemical method.Inspec keywords: X‐ray chemical analysis, microorganisms, transmission electron microscopy, nanoparticles, toxicology, scanning electron microscopy, ultraviolet spectra, particle size, Fourier transform spectra, X‐ray diffraction, antibacterial activity, visible spectra, infrared spectra, nanomedicine, silverOther keywords: stable AgNP, biosynthesised AgNP, SEM analysis, sunlight irradiation, silver ions, silver nanoparticle, amentotaxus assamica, biosynthesis, escherichia coli  相似文献   

3.
Biosynthesis of silver nanoparticles (AgNPs) using plant extract is a cheap, easily accessible and natural process in which the phyto‐constituents of the plants act as capping, stabilising and reducing agent. The present study explored the biosynthesis of AgNPs using aqueous leaf extract of Tinospora cordifolia and characterised via various techniques such as Fourier transform infrared, scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X‐ray analysis and X‐ray diffraction. Here, TEM confirmed the spherical morphology with 25–50 nm size of synthesised AgNPs. Further, anticancer efficiency of AgNPs synthesised using T. cordifolia leaves were evaluated against human lung adenocarcinoma cell line A549 by MTT, trypan blue assay, apoptotic morphological changes using Annexin V‐FITC and Propidium iodide (PI), nuclear morphological changes by DAPI (4, 6‐diamidino‐2‐phenylindole dihydrochloride) staining, reactive oxygen species generation and mitochondrial membrane potential determination. Results confirmed the AgNPs synthesised using T. cordifolia leaves are found to be highly toxic against human lung adenocarcinoma cell line A549.Inspec keywords: toxicology, cellular biophysics, cancer, silver, biomembranes, drugs, nanofabrication, nanoparticles, transmission electron microscopy, drug delivery systems, nanomedicine, lung, biomedical materials, antibacterial activity, X‐ray diffraction, Fourier transform infrared spectra, scanning‐transmission electron microscopyOther keywords: cytotoxicity, phytosynthesised silver nanoparticles, A549 cell line, biosynthesis, aqueous leaf, transmission electron microscopy, TEM, X‐ray analysis, X‐ray diffraction, spherical morphology, human lung adenocarcinoma cell line, nuclear morphological changes, 4, 6‐diamidino‐2‐phenylindole dihydrochloride, Tinospora cordifolia leaves, scanning electron microscopy, Fourier transform infrared, energy dispersive X‐ray analysis, Ag, size 25.0 nm to 50.0 nm, anticancer efficiency, trypan blue assay, propidium iodide, Annexin V‐FITC, DAPI staining, reactive oxygen species generation, mitochondrial membrane potential determination  相似文献   

4.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

5.
Biological synthesis of nanomaterials is a growing innovative approach and it was broadly utilised in the field of nanotechnology and nanomedicine. This study illustrates that biosynthesis of silver nanoparticles (AgNPs) using fucoidan extracted from seaweed Padina tetrastromatica. The functional groups of extracted fucoidan were characterised by Fourier transform infrared spectroscopy (FTIR) and used to NPs synthesis. Synthesised AgNPs were characterised by ultraviolet–visible spectra, scanning electron microscope, energy dispersive X‐ray, transmission electron microscope, selected area electron diffraction and FTIR. In this study, their main focus is enhancement antibacterial activity of AgNPs coated antibiotics against antibiotic resistant bacteria. Among the microorganisms, Serratia nematodiphila was resistant to novobiocin and penicillin, but it was sensitive to AgNPs impregnated antibiotic discs. The zone of inhibition was 12 and 15 mm. The synergistic effect of combined antibiotics and AgNPs resulted in increased fold area which was greater than the sum of their separate effects. It reveals that AgNPs are highly sought in the medicinal field due to their broad spectrum of antibacterial activity and relatively cheaper. This enhanced synergistic effect potentially superior to control the growth of bacteria and it is the budding process for the development of new remedial agents for severe diseases.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, drug delivery systems, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, electron diffraction, microorganisms, diseases, nanofabrication, drugs, cellular biophysicsOther keywords: phytochemical constituents, enhanced antibacterial activity, nanotechnology, nanomedicine, drug delivery, silver nanoparticles, biosynthesis, fucoidan extraction, marine brown seaweed Padina tetrastromatica, functional groups, Fourier transform infrared spectroscopy, FTIR spectroscopy, ultraviolet‐visible spectra, scanning electron microscopy, energy dispersive X‐ray analysis, transmission electron microscopy, selected area electron diffraction, AgNP coated antibiotics, antibiotic resistant bacteria, Serratia nematodiphila, novobiocin, penicillin, AgNP impregnated antibiotic discs, medicinal field, broad spectrum, enhanced synergistic effect, diseases, Ag  相似文献   

6.
The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, Earliella scabrosa, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX), high‐resolution transmission electron microscopy, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its in vitro antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month. The FESEM and EDX analyses revealed the spherical‐shaped AgNPs of an average size of 20 nm and the presence of elemental Ag, respectively. The XRD pattern showed the crystalline nature of AgNPs. The FTIR spectra confirmed the conversion of Ag+ ions to AgNPs due to reduction by biomolecules of macrofungus extract. The mycosynthesised AgNPs showed effective antibacterial activity against two Gram‐positive bacteria, namely Bacillus subtilis and Staphylococcus aureus, and two Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa. The pathogens were highly sensitive to AgNPs, whereas less sensitive to AgNO3. The mycosynthesised AgNPs showed significant wound healing potential with 68.58% of wound closure.Inspec keywords: surface plasmon resonance, wounds, X‐ray diffraction, nanoparticles, molecular biophysics, nanomedicine, antibacterial activity, biomedical materials, reduction (chemical), silver, microorganisms, X‐ray chemical analysis, nanofabrication, transmission electron microscopy, particle size, field emission scanning electron microscopy, Fourier transform infrared spectraOther keywords: high‐resolution transmission electron microscopy, healing efficacy, mycosynthesised AgNPs, spherical‐shaped AgNPs, wound healing agent, in vitro antibacterial efficacy, Earliella scabrosa, silver nanoparticles, physical properties, chemical properties, therapeutical agent, aqueous extract, macrofungus, field emission scanning electron microscopy, FESEM, energy dispersive X‐ray analysis, EDX, X‐ray diffraction, XRD, Fourier transform infrared spectroscopy, FTIR spectroscopy, surface plasmon resonance peak, crystalline nature, biomolecules, Gram‐positive bacteria, Bacillus subtilis, Staphylococcus aureus, Gram‐negative bacteria, Escherichia coli, Pseudomonas aeruginosa, pathogens, wound closure, Ag  相似文献   

7.
A green facile method has been successfully used for the synthesis of graphene oxide sheets decorated with silver nanoparticles (rGO/AgNPs), employing graphite oxide as a precursor of graphene oxide (GO), AgNO3 as a precursor of Ag nanoparticles (AgNPs), and geranium (Pelargonium graveolens) extract as reducing agent. Synthesis was accomplished using the weight ratios 1:1 and 1:3 GO/Ag, respectively. The synthesised nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, UV‐visible spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and thermogravimetric analysis. The results show a more uniform and homogeneous distribution of AgNPs on the surface of the GO sheets with the weight ratio 1:1 in comparison with the ratio 1:3. This eco‐friendly method provides a rGO/AgNPs nanocomposite with promising applications, such as surface enhanced Raman scattering, catalysis, biomedical material and antibacterial agent.Inspec keywords: silver, nanoparticles, graphene, nanocomposites, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, ultraviolet spectra, visible spectra, X‐ray chemical analysis, surface enhanced Raman scattering, catalysis, nanofabricationOther keywords: antibacterial agent, biomedical material, catalysis, surface enhanced Raman scattering, rGO‐AgNP nanocomposite, eco‐friendly method, homogeneous distribution, thermogravimetric analysis, energy dispersive X‐ray spectroscopy, Raman spectroscopy, UV‐visible spectroscopy, X‐ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, nanocomposites, reducing agent, geranium, graphene oxide sheets, graphite oxide, silver nanoparticles, green facile method  相似文献   

8.
The last decade has observed a rapid advancement in utilising biological system towards bioremediation of metal ions in the form of respective metal nanostructures or microstructures. The process may also be adopted for respective metal nanoparticle biofabrication. Among different biological methods, bacteria‐mediated method is gaining great attention for nanoparticle fabrication due to their eco‐friendly and cost‐effective process. In the present study, silver nanoparticle (AgNP) was synthesised via continuous biofabrication using Aeromonas veronii, isolated from swamp wetland of Sunderban, West Bengal, India. The biofabricated AgNP was further purified to remove non‐conjugated biomolecules using size exclusion chromatography, and the purified AgNPs were characterised using UV–visible spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy (TEM). Additionally, the presence of proteins as capping and stabilising agents was confirmed by the amide‐I and amide‐II peaks in the spectra obtained using attenuated total reflection Fourier transform infrared spectroscopy. The size of biofabricated AgNP was 10–20 nm, as observed using TEM. Additionally, biofabricated AgNP shows significant antibacterial potential against E. coli and S. aureus. Hence, biofabricated AgNP using Aeromonas veronii, which found resistant to a significant concentration of Ag ion, showed enhanced antimicrobial activity compared to commercially available AgNP.Inspec keywords: silver, nanoparticles, microorganisms, nanofabrication, purification, chromatography, ultraviolet spectra, visible spectra, X‐ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, proteins, molecular biophysics, biochemistry, molecular configurations, attenuated total reflection, Fourier transform infrared spectra, particle size, antibacterial activity, biomedical materials, nanomedicineOther keywords: capping agents, stabilising agents, amide‐I peaks, amide‐II peaks, attenuated total reflection Fourier transform infrared spectroscopy, antibacterial potential, E. coli, S. aureus, Aeromonas veronii, antimicrobial activity, size 10 nm to 20 nm, Ag, proteins, TEM, transmission electron microscopy, field emission scanning electron microscopy, X‐ray diffraction, UV‐visible spectroscopy, size exclusion chromatography, nonconjugated biomolecules, purification, swamp wetland, Aeromonas veronii, cost‐effective process, eco‐friendly, bacteria‐mediated method, biological methods, metal nanoparticle biofabrication, microstructures, metal nanostructures, metal ions, bioremediation, biological system, mangrove swamp, bacteria, silver nanoparticles  相似文献   

9.
The current study was performed to synthesize stable, eco‐friendly and bio‐compatible silver nano‐particles (AgNPs) of Agave americana, Mentha spicata and Mangifera indica leaves and to screen them for biological activities. The ultraviolet‐visible spectroscopic analysis revealed that λ‐max for AgNPs range from 350–500 nm. All AgNPs possessed polycrystalline structure as notified as intense graphical peaks in complete spectrum of 20 values ranging from 10–80° in X‐ray diffraction measurements and supported by scanning electron microscopy data. The size of the nano‐particles was confirmed by transmission electron microscopy (30–150 nm). Mass loss at variable temperatures was evaluated by simultaneous thermogravimetric and differential thermal analysis revealed reduction in mass and activity of compounds was notified by temperature increase from 200 to 800 °C, thus concluding it as thermally sensitive compounds. A. americana AgNPs showed significant (96%) activity against Methicillin resistant Staphylococcus aureus, Escherichia coli (95%) and Fusarium oxysporum (89%). Good antioxidant activity was shown by M. spicata AgNPs at 300 µl (79%). M. indica AgNPs showed significant phytotoxic activity (88%) at highest concentration. No haemagglutination reaction was observed for the test samples. The above results revealed that AgNPs synthesized from selected plant species possesses significant antimicrobial and phytotoxic effect.Inspec keywords: silver, nanoparticles, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, differential thermal analysis, microorganisms, antibacterial activity, nanomedicine, particle size, toxicologyOther keywords: green synthesis, biological evaluation, Agave americana aqueous leave extract, Mentha spicata aqueous leave extract, Mangifera indica aqueous leave extract, stable ecofriendly biocompatible silver nanoparticles, ultraviolet‐visible spectroscopy, polycrystalline structure, X‐ray diffraction, scanning electron microscopy, nanoparticle size, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, mass loss, thermally sensitive compounds, Methicillin resistant Staphylococcus aureus, Escherichia coli, Fusarium oxysporum, antioxidant activity, phytotoxic activity, plant species, antimicrobial effect, temperature 200 degC to 800 degC, Ag  相似文献   

10.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

11.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

12.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

13.
This study reports synthesis and characterisation of silver nanoparticles and their effect on antifungal efficacy of common agricultural fungicides. Silver nanoparticles were synthesised using biological and chemical reduction methods employing Elettaria cardamomum leaf extract and sodium citrate, respectively. Nanoparticles were then characterised using UV–Visible spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). While XRD assigned particles size of 31.86 nm for green and 41.91 nm for chemical silver nanoparticles with the help of the Debye–Scherrer formula, DLS specified monodisperse nature of both suspensions. Nanoparticles were tested individually and in combination with fungicides (carbendazim, mancozeb, and thiram) against fungal phytopathogens. Silver nanoparticles exhibited good antifungal activity and minimum inhibitory concentration (MIC) was observed in the range of 8–64 µg/ml. Also, they positively influenced the efficacy of fungicides. The mean MIC value (mean ± SD) for combination of all three fungicides with green AgNPs was 1.37 ± 0.6 µg/ml and for chemical AgNPs was 1.73 ± 1.0 µg/ml. Hence, it could be concluded that green AgNPs performed better than chemical AgNPs. Synergy was observed between green AgNPs and fungicides against Fusarium oxysporum. In conclusion, this study reports synthesis of monodisperse silver nanoparticles which serve as efficient antifungal agents and also enhance the fungicidal action of reported agricultural fungicides in combination studies.Inspec keywords: X‐ray diffraction, reduction (chemical), visible spectra, ultraviolet spectra, microorganisms, particle size, nanomedicine, nanofabrication, nanoparticles, agrochemicals, antibacterial activity, transmission electron microscopy, silver, light scattering, scanning electron microscopyOther keywords: antifungal effect, green silver nanoparticles, chemically synthesised silver nanoparticles, carbendazim, mancozeb, thiram, antifungal efficacy, common agricultural fungicides, biological reduction methods, chemical reduction methods, transmission electron microscopy, XRD assigned particles size, chemical silver nanoparticles, green AgNPs, chemical AgNPs, monodisperse silver nanoparticles, antifungal activity, agricultural fungicides, Elettaria cardamomum leaf extract, sodium citrate, UV‐visible spectroscopy, X‐ray diffraction, dynamic light scattering, size 31.86 nm, size 41.91 nm  相似文献   

14.
Green synthesis of silver nanoparticles (AgNPs) by utilising plant extract is an emerging class of nanotechnology. It revolutionizes all the field of biological sciences by synthesizing chemical free AgNPs. In the present study, AgNPs were synthesised by utilising Moringa oleifera leaves as the main reducing and stabilising agent and characterised through UV–visible spectroscopy, zeta analyser, X‐ray diffraction spectroscopy (XRD), energy dispersive X‐ray (EDX), and scanning electron microscopy (SEM). The different concentrations of biosynthesised AgNPs (10, 20, 30, and 40 ppm) were exogenously applied on the already infected plants (canker) of Citrus reticulata at different day intervals. The AgNPs at a concentration of 30 ppm was found to be most suitable concentration for creating the resistance against canker disease in Citrus reticulata. The enzymatic activities were also explored and it was found that 30 ppm concentration of biosynthesised AgNPs significantly reduced the biotic stress. Fruit quality and productivity parameters were also assessed and it was found that fruit quality and productivity were significant in response to 30 ppm concentration of biosynthesised AgNPs. The present work highlights the potent role of biosynthesised AgNPs, which can be used as biological control of citrus diseases and ultimately improving the quality and productivity of Citrus.Inspec keywords: X‐ray diffraction, scanning electron microscopy, silver, X‐ray chemical analysis, biochemistry, ultraviolet spectra, atomic force microscopy, visible spectra, biotechnology, microorganisms, nanoparticles, antibacterial activity, enzymes, nanotechnology, electrokinetic effects, plant diseases, crops, product qualityOther keywords: green synthesis, silver nanoparticles, fruit quality, chemical‐free AgNP synthesis, antimicrobial activity, biochemical profiling, Citrus reticulata L, Kinnow productivity, nanotechnology, Moringa oleifera leaves, stabilising agent, UV–Visible spectroscopy, zeta analyser, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, scanning electron microscopy, atomic force microscopy, Xanthomonas axonopodis, canker disease, enzymatic activities, superoxide dismutase, peroxidase, catalase, biological control, Ag  相似文献   

15.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

16.
The biosynthesis of nanoparticles (NPs) from plant extracts is important in nanotechnology because the employed methods are environmentally friendly and cost‐effective. In this study, silver NPs (AgNPs) were synthesised using Chinese tea (Oolong tea) extract. The effects of the relative content of the employed silver nitrate, the reaction temperature, the incubation time, and the tea‐to‐water ratio on the formation of the AgNPs were examined. The synthesised AgNPs were also analysed by UV–vis spectroscopy, dynamic light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and thermo‐gravimetric analysis. The NPs were observed to be highly crystalline, approximately spherical, and 10–50 nm in diameter. They were also tested for their use in preserving the postharvest quality of cherry tomatoes, with good results obtained. The tea AgNP treatment was specifically found to reduce the weight loss of the tomatoes, as well as changes in their total soluble solids, vitamin C, and titratable acid contents. The findings of this study indicate that postharvest tea AgNP treatment affords a clean, safe, high‐quality, and environmentally friendly method for extending the shelf life of fruits.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, thermal analysisOther keywords: silver nanoparticles, tea leaf extracts, fruit shelf life, Chinese tea extract, Oolong tea, silver nitrate, reaction temperature, incubation time, tea‐water ratio, UV‐vis spectroscopy, dynamic light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, thermo‐gravimetric analysis, cherry tomatoes, Ag  相似文献   

17.
Nanobiotechnology is a promising field concerned with the using of engineered nanomaterials, which leads to the improvement of new human remedial against pathogenic bacteria modalities. In this work, silver nanoparticles (AgNPs) were prepared by an easy, cheap and low‐cost electro‐chemical method. The AgNPs were then loaded successfully on to multi‐walled carbon nanotubes (MWCNTs) using a modified chemical reaction process. The AgNPs on the MWCNTs were well spread and evenly distributed on the surfaces of the long nanotubes with well‐graphitised walls as examined by high‐resolution transmission electron microscopy. X‐ray diffraction and transmission electron microscopy were used for sample characterisation. Good dispersion of AgNPs was obtained on the surface of MWCNTs, resulting in an efficient reactivity of the carbon nanotubes surfaces. Finally, the antibacterial activity of AgNPs/MWCNTs hybrid was evaluated against two pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus aureus exhibited excellent activity.Inspec keywords: nanocomposites, X‐ray diffraction, nanofabrication, nanoparticles, transmission electron microscopy, toxicology, silver, antibacterial activity, microorganisms, nanomedicine, multi‐wall carbon nanotubes, electrochemistryOther keywords: engineered nanomaterials, human remedial, pathogenic bacteria modalities, silver nanoparticles, multiwalled carbon nanotubes, modified chemical reaction process, well‐graphitised walls, high‐resolution transmission electron microscopy, cytotoxicity properties, functionalised carbon nanotubes, carbon nanotube surfaces, nanobiotechnology, low‐cost electrochemical method, AgNP‐MWCNT hybrid, X‐ray diffraction, antibacterial activity, Pseudomonas aeruginosa, Staphylococcus aureus, Ag‐C  相似文献   

18.
In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50  = 15.76 ppm and LC90  = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X‐ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50–120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco‐friendly and clean synthesis route to Ag.Inspec keywords: silver, nanofabrication, X‐ray diffraction, zoology, particle size, nanoparticles, biomedical materials, nanomedicineOther keywords: time 2.5 h, size 50 nm to 120 nm, silver nanoparticle, larvicidal property, instar larvae, Aedes aegypti, larvicidal effect, larvicidal activity performance, X‐ray diffraction, nanoparticle particle size distribution, absorption maxima, silver surface plasmon resonance peak  相似文献   

19.
Green synthesis of silver nanoparticles (AgNPs) using plant extracts has been achieved by eco‐friendly reducing and capping agents. The present study was conducted to evaluate the larvicidal efficacies of AgNPs synthesized using aqueous leaf extracts of Excoecaria agallocha against dengue vector, Aedes aegypti. The 3rd and 4th instar larvae of A. aegypti were exposed to various concentrations of aqueous extracts of E. agallocha, synthesized AgNPs and also crude solvent extracts (methanol and chloroform) for 24 h. The formation of AgNPs using aqueous leaf extracts was observed after 30 min with a characteristic colour change. The results recorded from UV‐Vis spectrum, XRD, FTIR, EDX, SEM and HR‐TEM were used to characterize and confirm the biosynthesis of AgNPs. The highest larvicidal efficacy of synthesized AgNPs was observed against 3rd instar larvae at LC50 4.65 mg/L, LC90 14.17 mg/L and 4th instar larvae with a concentration of LC50 6.10 mg/L, LC90 15.64 mg/L. A significant larvicidal activity was also observed with crude methanolic extracts against 3rd instar larvae at a concentration LC50 41.74 mg/L, LC90 123.61 mg/L and 4th instar larvae at a concentration of LC50 52.06 mg/L, LC90 166.40 mg/L as compared to the chloroform extract.Inspec keywords: silver, nanoparticles, nanofabrication, microorganisms, cellular biophysics, organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, scanning electron microscopy, transmission electron microscopyOther keywords: larvicidal activity, green synthesised silver nanoparticles, Excoecaria agallocha L. leaf extract, Aedes aegypti, plant extracts, capping agents, larvicidal efficacies, aqueous leaf extracts, excoecaria agallocha, dengue vector, Aedes aegypti, aegypti, aqueous extraction, E. agallocha, crude solvent extracts, methanol, chloroform, characteristic colour change, ultraviolet‐visible spectrum, X‐ray diffraction, Fourier‐transform infrared spectroscopy, EDX, scanning electron microscopy, high‐resolution transmission electron microscopy, AgNP biosynthesis, larvicidal efficacy, third instar larvae, instar larvae, crude methanolic extracts, chloroform extraction, time 24 h  相似文献   

20.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号