首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.  相似文献   

2.
Anti-PD1/PD-L1 immunotherapy has emerged as a standard of care for stage III-IV non-small cell lung cancer (NSCLC) over the past decade. Patient selection is usually based on PD-L1 expression by tumor cells and/or tumor mutational burden. However, mutations in oncogenic drivers such as EGFR, ALK, BRAF, or MET modify the immune tumor microenvironment and may promote anti-PD1/PD-L1 resistance. In this review, we discuss the molecular mechanisms associated with these mutations, which shape the immune tumor microenvironment and may impede anti-PD1/PD-L1 efficacy. We provide an overview of the current clinical data on anti-PD1/PD-L1 efficacy in NSCLC with oncogenic driver mutation.  相似文献   

3.
Treatment strategies targeting programed cell death 1 (PD-1) or its ligand, PD-L1, have been developed as immunotherapy against tumor progression for various cancer types including non-small cell lung cancer (NSCLC). The recent pivotal clinical trials of immune-checkpoint inhibiters (ICIs) combined with cytotoxic chemotherapy have reshaped therapeutic strategies and established various first-line standard treatments. The therapeutic effects of ICIs in these clinical trials were analyzed according to PD-L1 tumor proportion scores or tumor mutational burden; however, these indicators are insufficient to predict the clinical outcome. Consequently, molecular biological approaches, including multi-omics analyses, have addressed other mechanisms of cancer immune escape and have revealed an association of NSCLC containing specific driver mutations with distinct immune phenotypes. NSCLC has been characterized by driver mutation-defined molecular subsets and the effect of driver mutations on the regulatory mechanism of PD-L1 expression on the tumor itself. In this review, we summarize the results of recent clinical trials of ICIs in advanced NSCLC and the association between driver alterations and distinct immune phenotypes. We further discuss the current clinical issues with a future perspective for the role of precision medicine in NSCLC.  相似文献   

4.
5.
Lung cancer is a leading cause of cancer-related deaths worldwide. About 10–30% of patients with non-small cell lung cancer (NSCLC) harbor mutations of the EGFR gene. The Tumor Microenvironment (TME) of patients with NSCLC harboring EGFR mutations displays peculiar characteristics and may modulate the antitumor immune response. EGFR activation increases PD-L1 expression in tumor cells, inducing T cell apoptosis and immune escape. EGFR-Tyrosine Kinase Inhibitors (TKIs) strengthen MHC class I and II antigen presentation in response to IFN-γ, boost CD8+ T-cells levels and DCs, eliminate FOXP3+ Tregs, inhibit macrophage polarization into the M2 phenotype, and decrease PD-L1 expression in cancer cells. Thus, targeted therapy blocks specific signaling pathways, whereas immunotherapy stimulates the immune system to attack tumor cells evading immune surveillance. A combination of TKIs and immunotherapy may have suboptimal synergistic effects. However, data are controversial because activated EGFR signaling allows NSCLC cells to use multiple strategies to create an immunosuppressive TME, including recruitment of Tumor-Associated Macrophages and Tregs and the production of inhibitory cytokines and metabolites. Therefore, these mechanisms should be characterized and targeted by a combined pharmacological approach that also concerns disease stage, cancer-related inflammation with related systemic symptoms, and the general status of the patients to overcome the single-drug resistance development.  相似文献   

6.
7.
The l-type amino acid transporter 1 (LAT1) is a membranous transporter that transports neutral amino acids for cells and is dysregulated in various types of cancer. Here, we first observed increased LAT1 expression in pemetrexed-resistant non-small cell lung cancer (NSCLC) cells with high cancer stem cell (CSC) activity, and its mRNA expression level was associated with shorter overall survival in the lung adenocarcinoma dataset of the Cancer Genome Atlas database. The inhibition of LAT1 by a small molecule inhibitor, JPH203, or by RNA interference led to a significant reduction in tumorsphere formation and the downregulation of several cancer stemness genes in NSCLC cells through decreased AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) activation. The treatment of the cell-permeable leucine derivative promoted AKT/mTOR phosphorylation and reversed the inhibitory effect of JPH203 in the reduction of CSC activity in pemetrexed-resistant lung cancer cells. Furthermore, we observed that LAT1 silencing caused the downregulation of programmed cell death 1 ligand 1 (PD-L1) on lung cancer cells. The PD-L1+/LAT1+ subpopulation of NSCLC cells displayed great CSC activity with increased expression of several cancer stemness genes. These data suggest that LAT1 inhibitors can serve as anti-CSC agents and could be used in combination with immune checkpoint inhibitors in lung cancer therapy.  相似文献   

8.
Immune checkpoint inhibitors (ICI) targeting programmed cell death-1 or its ligand (PD-L1) have improved outcomes in non-small cell lung cancer (NSCLC). High tumor PD-L1 expression, detected by immunohistochemistry (IHC) typically on formalin-fixed paraffin-embedded (FFPE) histological specimens, is linked to better response. Following our previous investigation on PD-L1 in cytological samples, the aim of this study was to further explore the potential impacts of various clinicopathological and molecular factors on PD-L1 expression. Two retrospective NSCLC cohorts of 1131 and 651 specimens, respectively, were investigated for PD-L1 expression (<1%/1–49%/≥50%), sample type, sample site, histological type, and oncogenic driver status. In both cohorts, PD-L1 was positive (≥1%) in 55% of the cases. Adenocarcinomas exhibited lower PD-L1 expression than squamous cell carcinomas (p < 0.0001), while there was no difference between sample types, tumor locations, or between the two cohorts in multivariate analysis (all p ≥ 0.28). Mutational status correlated significantly with PD-L1 expression (p < 0.0001), with the highest expression for KRAS-mutated cases, the lowest for EGFR-mutated, and the KRAS/EGFR wild-type cases in between. There was no difference in PD-L1 levels between different prevalent KRAS mutations (all p ≥ 0.44), while mucinous KRAS-mutated adenocarcinomas exhibited much lower PD-L1 expression than non-mucinous (p < 0.0001). Our data indicate that cytological and histological specimens are comparable for PD-L1 evaluation. Given the impact of KRAS mutations and the mucinous growth pattern on PD-L1 expression, these factors should be further investigated in studies on ICI response.  相似文献   

9.
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.  相似文献   

10.
This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC) tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip). Biochip hybridization identified 17 (21%) samples to carry a KRAS mutation of which 16 (33%) were adenocarcinomas and 1 (3%) was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.  相似文献   

11.
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered ‘undruggable’. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.  相似文献   

12.
Immune checkpoint inhibitors (ICIs) have a huge impact on clinical treatment results in non-small cell lung cancer (NSCLC). Blocking antibodies targeting programmed cell death protein 1 (PD-1), programmed cell death protein ligand 1 (PD-L1) or CTLA-4 (cytotoxic T cell antigen 4) have been developed and approved for the treatment of NSCLC patients. However, a large number of patients develop resistance to this type of treatment. Primary and secondary immunotherapy resistance are distinguished. No solid biomarkers are available that are appropriate to predict the unique sensitivity to immunotherapy. Knowledge of predictive markers involved in treatment resistance is fundamental for planning of new treatment combinations. Scientists focused research on the use of immunotherapy as an essential treatment in combination with other therapy strategies, which could increase cancer immunogenicity by generating tumor cells death and new antigen release as well as by targeting other immune checkpoints and tumor microenvironment. In the present review, we summarize the current knowledge of molecular bases underlying immunotherapy resistance and discuss the capabilities and the reason of different therapeutic combinations.  相似文献   

13.
14.
Drug resistance continues to be a major problem associated with cancer treatment. One of the primary causes of anticancer drug resistance is the frequently mutated RAS gene. In particular, considerable efforts have been made to treat KRAS-induced cancers by directly and indirectly controlling the activity of KRAS. However, the RAS protein is still one of the most prominent targets for drugs in cancer treatment. Recently, novel targeted protein degradation (TPD) strategies, such as proteolysis-targeting chimeras, have been developed to render “undruggable” targets druggable and overcome drug resistance and mutation problems. In this study, we discuss small-molecule inhibitors, TPD-based small-molecule chemicals for targeting RAS pathway proteins, and their potential applications for treating KRAS-mutant cancers. Novel TPD strategies are expected to serve as promising therapeutic methods for treating tumor patients with KRAS mutations.  相似文献   

15.
The involvement of periostin (POSTN) in non-small-cell lung cancer (NSCLC) migration, invasion, and its underlying mechanisms has not been well established. The present study aims to determine epithelial POSTN expression in NSCLC and to assess associations with clinicopathological factors and prognosis as well as to explore the effects of POSTN knockdown on tumor microenvironment and the migration and invasion of lung cancer cells. Immunohistochemistry was used to evaluate epithelial POSTN expression in NSCLC. POSTN mRNA expression in the dissected lung cancer cells was confirmed by laser capture microdissection and real-time PCR. A549 cells were used for transfecting shRNA-POSTN lentiviral particles. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with POSTN-specific short hairpin (sh)RNA. The results demonstrated significantly higher cytoplasmic POSTN expression in the whole NSCLC group compared to non-malignant lung tissue (NMLT). POSTN expression in cancer cells may be considered to be an independent prognostic factor for survival in NSCLC. POSTN knockdown significantly inhibited A549 cell migration and invasion capabilities in vitro. The activity and the expression level of matrix metalloproteinase-2 (MMP-2) were significantly decreased in A549.shRNA compared to control cells. In summary, POSTN may regulate lung cancer cell invasiveness by modulating the expression of MMP-2 and may represent a potential target for novel therapeutic intervention for NSCLC.  相似文献   

16.
17.
There is an urgent need for identification of new prognostic markers and therapeutic targets for non-small cell lung cancer (NSCLC). In this study, we evaluated immune cells markers in 100 NSCLC specimens. Immunohistochemical analysis revealed no prognostic value for the markers studied, except CD163 and CD206. At the same time, macrophage markers iNOS and CHID1 were found to be expressed in tumor cells and associated with prognosis. We showed that high iNOS expression is a marker of favorable prognosis for squamous cell lung carcinoma (SCC), and NSCLC in general. Similarly, high CHID1 expression is a marker of good prognosis in adenocarcinoma and in NSCLC in general. Analysis of prognostic significance of a high CHID1/iNOS expression combination showed favorable prognosis with 20 months overall survival of patients from the low CHID1/iNOS expression group. For the first time, we demonstrated that CHID1 can be expressed by NSCLC cells and its high expression is a marker of good prognosis for adenocarcinoma and NSCLC in general. At the same time, high expression of iNOS in tumor cells is a marker of good prognosis in SCC. When used in combination, CHID1 and iNOS show a very good prognostic capacity for NSCLC. We suggest that in the case of lung cancer, tumor-associated macrophages are likely ineffective as a therapeutic target. At the same time, macrophage markers expressed by tumor cells may be considered as targets for anti-tumor therapy or, as in the case of CHID1, as potential anti-tumor agents.  相似文献   

18.
In recent years, the choice of immune checkpoint inhibitors (ICIs) as a treatment based on high expression of programmed death-ligand 1 (PD-L1) in lung cancers has been increasing in prevalence. The high expression of PD-L1 could be a predictor of ICI efficacy as well as high tumor mutation burden (TMB), which is determined using next-generation sequencing (NGS). However, a great deal of effort is required to perform NGS to determine TMB. The present study focused on γH2AX, a double-strand DNA break marker, and the suspected positive relation between TMB and γH2AX was investigated. We assessed the possibility of γH2AX being an alternative marker of TMB or PD-L1. One hundred formalin-fixed, paraffin-embedded specimens of lung cancer were examined. All of the patients in the study received thoracic surgery, having been diagnosed with lung adenocarcinoma or squamous cell carcinoma. The expressions of γH2AX and PD-L1 (clone: SP142) were evaluated immunohistochemically. Other immunohistochemical indicators, p53 and Ki-67, were also used to estimate the relationships of γH2AX. Positive relationships between γH2AX and PD-L1 were proven, especially in lung adenocarcinoma. Tobacco consumption was associated with higher expression of γH2AX, PD-L1, Ki-67, and p53. In conclusion, the immunoexpression of γH2AX could be a predictor for the adaptation of ICIs as well of as PD-L1 and TMB.  相似文献   

19.
20.
Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号