首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.  相似文献   

2.
3.
Currently, effective drugs for triple-negative breast cancer (TNBC) are lacking in clinics. c-myc is one of the core members during TNBC tumorigenesis, and G-rich sequences in the promoter region can form a G-quadruplex conformation, indicating that the c-myc inhibitor is a possible strategy to fight cancer. Herein, a series of chiral ruthenium(II) complexes ([Ru(bpy)2(DPPZ-R)](ClO4)2, Λ/Δ−1: R = -H, Λ/Δ−2: R = -Br, Λ/Δ−3: R = -C≡C(C6H4)NH2) were researched based on their interaction with c-myc G-quadruplex DNA. Λ−3 and Δ−3 show high affinity and stability to decrease their replication. Additional studies showed that Λ−3 and Δ−3 exhibit higher inhibition against different tumor cells than other molecules. Δ−3 decreases the viability of MDA-MB-231 cells with an IC50 of 25.51 μM, which is comparable with that of cisplatin, with an IC50 of 25.9 μM. Moreover, Δ−3 exhibits acceptable cytotoxic activity against MDA-MB-231 cells in a zebrafish xenograft breast cancer model. Further studies suggested that Δ−3 decreases the viability of MDA-MB-231 cells predominantly through DNA-damage-mediated apoptosis, which may be because Δ−3 can induce DNA damage. In summary, the results indicate that Ru(II) complexes containing alkinyl groups can be developed as c-myc G-quadruplex DNA binders to block TNBC progression.  相似文献   

4.
To characterize the mechanisms by which the highly conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on Exoc5 (also known as sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5−/− zebrafish had smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post-fertilization, loss of rod and cone opsins were observed in zebrafish exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function and loss of visual photoreceptor pigments. Abnormal levels of RPE65 together with a reduced c-wave amplitude indicate a dysfunctional RPE. The retinal phenotype in Exoc5−/− mice was present at 20 weeks, but was more pronounced at 27 weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. Together, these data suggest that exocyst-mediated signaling in the RPE is required for RPE structure and function, indirectly leading to photoreceptor degeneration.  相似文献   

5.
The phosphatidylinositol 3-kinase (PI3K) family of enzymes plays a determinant role in inflammation and autoimmune responses. However, the implication of the different isoforms of catalytic subunits in these processes is not clear. Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that entails innate and adaptive immune response elements in which PI3K is a potential hub for immune modulation. In a mouse transgenic model with T-cell-specific deletion of p110α catalytic chain (p110α−/−ΔT), we show the modulation of collagen-induced arthritis (CIA) by this isoform of PI3K. In established arthritis, p110α−/−ΔT mice show decreased prevalence of illness than their control siblings, higher IgG1 titers and lower levels of IL-6 in serum, together with decreased ex vivo Collagen II (CII)-induced proliferation, IL-17A secretion and proportion of naive T cells in the lymph nodes. In a pre-arthritis phase, at 13 days post-Ag, T-cell-specific deletion of p110α chain induced an increased, less pathogenic IgG1/IgG2a antibodies ratio; changes in the fraction of naive and effector CD4+ subpopulations; and an increased number of CXCR5+ T cells in the draining lymph nodes of the p110α−/−ΔT mice. Strikingly, T-cell blasts in vitro obtained from non-immunized p110α−/−ΔT mice showed an increased expression of CXCR5, CD44 and ICOS surface markers and defective ICOS-induced signaling towards Akt phosphorylation. These results, plus the accumulation of cells in the lymph nodes in the early phase of the process, could explain the diminished illness incidence and prevalence in the p110α−/−ΔT mice and suggests a modulation of CIA by the p110α catalytic chain of PI3K, opening new avenues of intervention in T-cell-directed therapies to autoimmune diseases.  相似文献   

6.
7.
8.
Vanishing white matter (VWM) disease is a genetic leukodystrophy leading to severe neurological disease and early death. VWM is caused by bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (EIF2B). Previous studies have attempted to investigate the molecular mechanism of VWN by constructing models for each subunit of EIF2B that causes VWM disease. The underlying molecular mechanisms of the way in which mutations in EIF2B3 result in VWM are largely unknown. Based on our recent results, we generated an eif2b3 knockout (eif2b3−/−) zebrafish model and performed quantitative proteomic analysis between the wild-type (WT) and eif2b3−/− zebrafish, and identified 25 differentially expressed proteins. Four proteins were significantly upregulated, and 21 proteins were significantly downregulated in eif2b3−/− zebrafish compared to WT. Lon protease and the neutral amino acid transporter SLC1A4 were significantly increased in eif2b3−/− zebrafish, and crystallin proteins were significantly decreased. The differential expression of proteins was confirmed by the evaluation of mRNA levels in eif2b3−/− zebrafish, using whole-mount in situ hybridization analysis. This study identified proteins which candidates as key regulators of the progression of VWN disease, using quantitative proteomic analysis in the first EIF2B3 animal model of VWN disease.  相似文献   

9.
Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/− and knock out BDNF−/−) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.  相似文献   

10.
Pseudoxanthoma elasticum (PXE) is an intractable Mendelian disease characterized by ectopic calcification in skin, eyes and blood vessels. Recently, increased activation of the DNA damage response (DDR) was shown to be involved in PXE pathogenesis, while the DDR/PARP1 inhibitor minocycline was found to attenuate aberrant mineralization in PXE cells and zebrafish. In this proof-of-concept study, we evaluated the anticalcifying properties of minocycline in Abcc6−/− mice, an established mammalian PXE model. Abcc6−/− mice received oral minocycline supplementation (40 mg/kg/day) from 12 to 36 weeks of age and were compared to untreated Abcc6−/− and Abcc6+/+ siblings. Ectopic calcification was evaluated using X-ray microtomography with three-dimensional reconstruction of calcium deposits in muzzle skin and Yasue’s calcium staining. Immunohistochemistry for the key DDR marker H2AX was also performed. Following minocycline treatment, ectopic calcification in Abcc6−/− mice was significantly reduced (−43.4%, p < 0.0001) compared to untreated Abcc6−/− littermates. H2AX immunostaining revealed activation of the DDR at sites of aberrant mineralization in untreated Abcc6−/− animals. In conclusion, we validated the anticalcifying effect of minocycline in Abcc6−/− mice for the first time. Considering its favorable safety profile in humans and low cost as a generic drug, minocycline may be a promising therapeutic compound for PXE patients.  相似文献   

11.
The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.  相似文献   

12.
13.
14.
15.
Progranulin (PGRN) is a secreted glycoprotein that regulates numerous cellular processes. The role of PGRN as a regulator of lysosomes has recently received attention. The purpose of this study was to characterize the retinal phenotype in mature PGRN knockout (Grn−/−) mice. The a-wave amplitude of scotopic electroretinogram and outer nuclear thickness were significantly reduced at 6 months of age in Grn−/− mice compared to wild-type (Grn+/+) mice. In Grn−/− mice, retinal microglial cells accumulated on the retinal pigment epithelium (RPE) apical layer, and the number of infiltrated microglia and white fundus lesions between 2 and 6 months of age showed a close affinity. In Grn+/+ mice, PGRN was located in the retina, while the strongest PGRN signals were detected in the RPE-choroid. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid were demonstrated. Our data suggest that the subretinal translocation of microglia is a characteristic phenotype in the retina of mature PGRN knockout mice. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid might modulate microglial dynamics in PGRN knockout mice.  相似文献   

16.
Magnaporthe oryzae is an important pathogen that causes a devastating disease in rice. It has been reported that the dual-specificity LAMMER kinase is conserved from yeast to animal species and has a variety of functions. However, the functions of the LAMMER kinase have not been reported in M. oryzae. In this study, we identified the unique LAMMER kinase MoKns1 and analyzed its function in M. oryzae. We found that in a MoKNS1 deletion mutant, growth and conidiation were primarily decreased, and pathogenicity was almost completely lost. Furthermore, our results found that MoKns1 is involved in autophagy. The ΔMokns1 mutant was sensitive to rapamycin, and MoKns1 interacted with the autophagy-related protein MoAtg18. Compared with the wild-type strain 70−15, autophagy was significantly enhanced in the ΔMokns1 mutant. In addition, we also found that MoKns1 regulated DNA damage stress pathways, and the ΔMokns1 mutant was more sensitive to hydroxyurea (HU) and methyl methanesulfonate (MMS) compared to the wild-type strain 70−15. The expression of genes related to DNA damage stress pathways in the ΔMokns1 mutant was significantly different from that in the wild-type strain. Our results demonstrate that MoKns1 is an important pathogenic factor in M. oryzae involved in regulating autophagy and DNA damage response pathways, thus affecting virulence. This research on M. oryzae pathogenesis lays a foundation for the prevention and control of M. oryzae.  相似文献   

17.
Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61. Compared to blood endothelial cells, GPRC5B is the most abundant GPCR expressed in cultured human lymphatic endothelial cells (LECs), and in situ RNAscope shows high mRNA levels in lymphatics of mice. Using genetic engineering approaches in both zebrafish and mice, we characterized the function of GPRC5B in lymphatic development. Morphant gprc5b zebrafish exhibited failure of thoracic duct formation, and Gprc5b−/− mice suffered from embryonic hydrops fetalis and hemorrhage associated with subcutaneous edema and blood-filled lymphatic vessels. Compared to Gprc5+/+ littermate controls, Gprc5b−/− embryos exhibited attenuated developmental lymphangiogenesis. During the postnatal period, ~30% of Gprc5b−/− mice were growth-restricted or died prior to weaning, with associated attenuation of postnatal cardiac lymphatic growth. In cultured human primary LECs, expression of GPRC5B is required to maintain cell proliferation and viability. Collectively, we identify a novel role for the lymphatic-enriched orphan GPRC5B receptor in lymphangiogenesis of fish, mice and human cells. Elucidating the roles of orphan GPCRs in lymphatics provides new avenues for discovery of druggable targets to treat lymphatic-related conditions such as lymphedema and cancer.  相似文献   

18.
The behavior against temperature and thermal stability of enzymes is a topic of importance for industrial biocatalysis. This study focuses on the kinetics and thermodynamics of the thermal inactivation of Lipase PS from B. cepacia and Palatase from R. miehei. Thermal inactivation was investigated using eight inactivation models at a temperature range of 40–70 °C. Kinetic modeling showed that the first-order model and Weibull distribution were the best equations to describe the residual activity of Lipase PS and Palatase, respectively. The results obtained from the kinetic parameters, decimal reduction time (D and tR), and temperature required (z and z’) indicated a higher thermal stability of Lipase PS compared to Palatase. The activation energy values (Ea) also indicated that higher energy was required to denature bacterial (34.8 kJ mol−1) than fungal (23.3 kJ mol−1) lipase. The thermodynamic inactivation parameters, Gibbs free energy (ΔG#), entropy (ΔS#), and enthalpy (ΔH#) were also determined. The results showed a ΔG# for Palatase (86.0–92.1 kJ mol−1) lower than for Lipase PS (98.6–104.9 kJ mol−1), and a negative entropic and positive enthalpic contribution for both lipases. A comparative molecular dynamics simulation and structural analysis at 40 °C and 70 °C were also performed.  相似文献   

19.
Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1−/− mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5−/−:Npc1−/− mice were smaller than Mgat5+/+:Npc1−/− mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5−/−:Npc1−/− mice compared to Mgat5+/+:Npc1−/− mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5−/−:Npc1−/− mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.  相似文献   

20.
Parkinson’s Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (GBA). Mutations in GBA also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms. Therefore, identifying therapeutic strategies that improve the phenotypic traits associated with GD/PD in animal models may provide an opportunity for treating neurological manifestations of GD/PD. Thiazolidinediones (TZDs, also called glitazones) are a class of compounds targeted for the treatment of type 2 diabetes, and have also shown promise for the treatment of neurodegenerative disease, including PD. Here, we tested the efficacy of glitazone administration during development in a fly GD model with deletions in the GBA homolog, dGBA1b (GBA1ΔTT/ΔTT). We observed an optimal dose of pioglitazone (PGZ) at a concentration of 1 μM that reduced sleep deficits, locomotor impairments, climbing defects, and restoration of normal protein levels of Ref(2)P, a marker of autophagic flux, in GBA1ΔTT/ΔTT mutant flies, compared to GBA1+/+ control flies. These data suggest that PGZ may represent a potential compound with which to treat GD/PD by improving function of lysosomal-autophagy pathways, a cellular process that removes misfolded or aggregated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号