首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In recent years nanotechnology has become increasingly important in almost every field. The new and improved physical, chemical and biological properties of material at nanoscale have far reaching implications in the fields of science and technology. Nanoparticles’ effect on various plant species must be investigated to develop a comprehensive toxicity profile for nanoparticles. The current study strives to evaluate the effects of nine types of metal nanoparticles including monometallic and bimetallic alloy nanoparticles [Ag, Au, Cu, AgCu (1:3), AgCu (3:1), AuCu (1:3), AuCu (3:1), AgAu (1:3), AgAu (3:1)] on seed germination, root and shoot growth and biochemical profile of Silybum marianum plant. Seed germination was greatly affected and increased significantly upon treatment with nanoparticles’ suspensions and was recorded highest for Ag nanoparticle suspension. Metal nanoparticles also had a significant effect on the biochemical profile of S. marianum. For the first week, the effect on DPPH, total phenolics content, total flavonoids content, total protein content, peroxidase activity and superoxide dismutase activity was enhanced, but declined as the time progressed. Among the nanoparticles being used, the effect of Ag nanoparticle was mostly enhancing. The results obtained are significant in mapping the effects of different monometallic and bimetallic nanoparticles on medicinal plant species.Inspec keywords: silver, gold, copper, silver alloys, gold alloys, copper alloys, nanoparticles, nanofabrication, nanobiotechnology, biochemistry, bimetals, enzymes, molecular biophysics, suspensions, toxicologyOther keywords: Au, Cu, AgCu, AuCu, AgAu, Ag, medicinal plant species, superoxide dismutase activity, peroxidase activity, total protein content, total flavonoids content, DPPH, total phenolics, nanoparticle suspensions, shoot growth, root growth, comprehensive toxicity profile, plant species, nanoparticle effect, nanoscale material, biological properties, chemical properties, physical properties, nanotechnology, bimetallic alloy nanoparticles, monometallic alloy nanoparticles, Silybum marianum, biochemical profile, seed germination  相似文献   

2.
The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small‐sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content.Inspec keywords: nanofabrication, nanomedicine, botany, biochemistry, biological tissues, suspensions, toxicology, silver, copper, goldOther keywords: metal nanoparticle synthesis, seed germination, seedling growth, Eruca sativa, nanotechnology, polyols process, medicinally important plant, biochemical parameters, plant tissues, nanoparticles suspension, stress, endogenous mechanisms, antioxidant secondary metabolites, human ailment treatment, toxicity levels, total protein content, total flavonoids content, total phenolics content, Ag, Cu, Au  相似文献   

3.
The environmentally friendly synthesis of silver nanoparticles (AgNPs) has been achieved employing silver nitrate and sodium alginate (SA) without using other chemicals except for sodium hydrate. In the synthesis process, SA functions as both reductive and stabilising agent. The as‐synthesised AgNPs size can be controlled just changing the reactive parameters such as the concentration of silver nitrate and SA, the solution pH, the reaction temperature and time. Formation of AgNPs was observed by the colour change in the reaction medium which was further established with UV–Vis spectroscopy. The characterisation of AgNPs infers that the as‐synthesised AgNPs with an average size of 8.2 nm were spherical in shape and a face cubic crystal structure. The AgNPs‐SA beads were easily prepared using AgNPs‐SA nanocomposites due to SA crosslinking with metal ions. The catalytic efficiency of the resulting AgNPs beads is evaluated for the reduction of dyes such as 4‐nitrophenol, methylene blue and reactive red in the presence of NaBH4. Antibacterial efficacy of AgNPs was analysed against gram‐negative Escherichia Coli and gram‐positive Staphylococcus aureus by measuring the zones of inhibition on the solid growth medium. The as‐synthesised AgNPs have shown efficient inhibitory activity against the tested bacterial strains.Inspec keywords: nanocomposites, dyes, filled polymers, silver, nanoparticles, nanofabrication, pH, ultraviolet spectra, visible spectra, catalysis, dissociation, microorganisms, nanomedicine, reduction (chemical), antibacterial activityOther keywords: greenly synthesised silver‐alginate nanocomposites, dye degradation, environmentally friendly synthesis, sodium alginate, sodium hydrate, reductive agent, stabilising agent, reactive parameters, silver nitrate concentration, solution pH, reaction temperature, reaction time, colour change, reaction medium, UV‐visible spectroscopy, face cubic crystal structure, metal ions, catalytic efficiency, dye reduction, 4‐nitrophenol, methylene blue, reactive red, antibacterial efficacy, gram‐negative Escherichia Coli, gram‐positive Staphylococcus aureus, inhibition zones, solid growth medium, inhibitory activity, bacterial strains, Ag  相似文献   

4.
Nanocarriers, in various forms, have the possibility of providing endless opportunities in the area of drug delivery. The purpose of this study was formulation and evaluation of betamethasone sodium phosphate (BSP) loaded chitosan nanoparticles (CNPs) using cross‐linked chitosan malic acid derivative for better therapeutic effect. The prepared BSP loaded CNPs formulations were characterised for photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics and in‐vivo toxicity studies. Mean particle diameter of BSP loaded CNPs was about 130 nm with spherical morphology. The in‐vitro drug release study of BSP loaded CNPs showed sustained drug release for 48 h and drug release was found to follow zero order. The biochemical, haematology and histopathology reports of in‐vivo toxicity studies revealed that BSP loaded CNPs do not exhibit any toxic effect on vital organs and could be safe. The developed BSP loaded CNPs are found to be safer, and used for the treatments of highly prevalent and chronic disease like rheumatoid arthritis.Inspec keywords: nanoparticles, drug delivery systems, electrokinetic effects, toxicology, photon correlation spectroscopy, transmission electron microscopy, diseases, organic compounds, nanomedicineOther keywords: betamethasone sodium phosphate, chitosan nanoparticles, antirheumatoid activity, nanocarriers, drug delivery, cross‐linked chitosan malic acid derivative, photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics, in‐vivo toxicity, spherical morphology, rheumatoid arthritis  相似文献   

5.
Cassia absus is used for medicinal purposes for a long time all over the world. In this study, the authors report the antimicrobial potential of C. absus extracts obtained with different solvents. The extract(s) obtained with ethyl acetate yielded the best antibacterial effects because of a rich supply of oxalates and alkaloids in it. The same extract was also exploited for reducing Ag+ ions (to metallic Ag0) for the synthesis of nanoparticles. Electron microscopy revealed that the silver nanoparticles were ∼18–25 nm in diameter. The Fourier‐transform infrared evaluation pointed towards the fact that flavonoids present in the plant extract were acting as reductants while amino groups were the bound stabilisation agents to the synthesised nanoparticles limiting the diameter to a certain threshold and avoiding aggregation naturally. A comparative antibacterial assay of C. absus versus Ag nanoparticles showed that the nanoparticles as well as organic (ethyl acetate) extract of the plant checked the growth of selected (MDR) superbugs. However, the biosynthesised Ag nanoparticles returned better antibacterial efficacies than ethyl acetate extract.Inspec keywords: biomimetics, nanomedicine, nanoparticles, nanofabrication, reduction (chemical), microorganisms, silver, antibacterial activity, Fourier transform infrared spectra, biomedical materials, electron microscopyOther keywords: antibacterial capacity, biomimetic synthesis, silver nanoparticles, antimicrobial potential, ethyl acetate, oxalates, alkaloids, electron microscopy, Fourier‐transform infrared evaluation, antibacterial efficacies, antibacterial assay, organic extract, Cassia absus, flavonoids, Ag  相似文献   

6.
The current investigation involves the green synthesis of copper nanoparticles (CuNPs) from an aqueous plant extract of Moringa oleifera Lam by two methods: (I) time‐based approach and (II) heat treatment of aqueous solution. Prepared CuNPs were characterised via Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy and transmission EM. The study also reveals the potential bioactivity of the prepared CuNPs. In vitro anti‐microbial efficiency of CuNPs was estimated against bacterial and fungal strains by the agar well diffusion method. Anti‐oxidant capacity of CuNPs was determined using ferric reducing ability of plasma (FRAP), lipid peroxidation (LPO) and peroxidase assays, while the antiplatelet potential was determined by measuring two haemostatic parameters (PT & APTT assay). The minimum inhibitory concentration was observed at 60 µg/ml against Streptomyces griseus and Aspergillus niger when NPs were prepared by method II. CuNPs prepared by the method I showed higher FRAP and LPO activities, while increased POX activity was found in CuNPs prepared by method II. CuNPs prepared using method I also showed better anti‐oxidant and antiplatelet potential. It was observed that M. oleifera ‐derived CuNPs exhibits strong anti‐microbial, anti‐oxidant and APTT potential. This indicates potential utilization of green synthesized NPs for various industrial and therapeutic strategies.Inspec keywords: nanofabrication, nanoparticles, copper, biomedical materials, nanomedicine, heat treatment, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, antibacterial activity, microorganisms, cellular biophysics, enzymes, biochemistry, molecular biophysicsOther keywords: green synthesis, copper nanoparticles, aqueous plant, Moringa oleifera Lam, time‐based approach, heat treatment, aqueous solution, Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission EM, potential bioactivity, in vitro antimicrobial efficiency, fungal strains, bacterial strains, agar well diffusion method, ferric reducing ability of plasma, lipid peroxidation, peroxidase assays, haemostatic parameters, Streptomyces griseus, Aspergillus niger, APTT activity, therapeutic strategies, industrial strategies, Cu  相似文献   

7.
The biological way of metallic nanoparticles production using ecofriendly biocontrol agents are largely used to control many plant pathogenic microorganisms in agriculture. Hence, an attempt was made to evaluate the potential of suppressive activity of nanoparticles produced by an indigenous isolate, Trichoderma atroviride against a tea pathogenic fungus namely Phomopsis theae. The presence of biosynthesised nanoparticles was primarily confirmed through ultraviolet–visible spectroscopy analysis and was characterised using X‐ray diffraction and scanning electron microscopy‐energy dispersive X‐ray analysis to delineate the size, shape and nature of particles. Further, Fourier transform infrared analysis revealed the functional biomolecules responsible for capping and stabilisation of nanoparticles. In addition, culture filtrate containing nanoparticles was subjected to invitro antifungal studies which revealed a considerable suppression on the growth of P. theae. The biosynthesised nanoparticles were found to be active even after 3 months which established and confirmed the stability. Finally, field experiments conducted with soil application and wound dressing of nanoparticles exhibited a significant reduction in canker size when plants treated with gold followed by silver nanoparticles. Similarly, improvement in leaf yield was noted in response to these treatments. The above study confirmed the efficacy of metallic nanoparticles in management of stem disease in tea plantation.Inspec keywords: diseases, gold, silver, nanoparticles, nanobiotechnology, nanofabrication, particle size, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, ultraviolet spectra, visible spectra, microorganisms, Fourier transform infrared spectra, molecular biophysics, antibacterial activityOther keywords: biosynthesis, silver nanoparticles, gold nanoparticles, Trichoderma atroviride, biological control, Phomopsis canker disease, tea plants, metallic nanoparticles, ecofriendly biocontrol agents, plant pathogenic microorganisms, agriculture, indigenous isolate, tea pathogenic fungus, Phomopsis theae, ultraviolet‐visible spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, particle size, particle shape, Fourier transform infrared analysis, functional biomolecules, invitro antifungal study, P. theae growth, soil application, wound dressing, stem disease, Au, Ag  相似文献   

8.
Incorporation of nanoparticles into a number of manufacturing products raised the concern of environmental release via deliberate or accidental routes. Here, experiments were performed to examine the effect of copper oxide nanoparticles (CuO NPs), and polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) impregnated CuO NPs on seed germination and growth of Trigonella foenum‐graecum L. as well as on callus induction through tissue culture technique. Seed germination frequency, length, and weight parameters did not inhibit at higher extent by application of NPs; however, copper acetate, PVP, and PEG significantly decreased the values of all parameters. In all the cases, negative effects were observed concentration‐dependent. PVP and PEG impregnated CuO were found less toxic for calli fresh and dry weight induced from leaf and stem explants. The 2, 2‐diphenyl‐1‐picrylhydrazyl reagent‐free radical scavenging activity, total antioxidative potential, and total reducing power potential along with total flavonoid and phenolic contents are found elevated in root when compared with shoot. Furthermore, impregnation of PVP and PEG on CuO NPs increases the oxidative response. The results conclude that impregnation of organic molecules on nanoparticles does not reduce the toxicity though can be exploited for enhanced production of secondary metabolites for medicinal purposes.Inspec keywords: botany, copper compounds, nanoparticles, toxicology, polymers, biochemistry, nanomedicine, biological tissues, free radical reactionsOther keywords: PVP‐PEG, physiological characteristics, biochemical characteristics, Trigonella foenum‐graecum L, copper oxide nanoparticles, polyvinyl pyrrolidone, polyethylene glycol, callus induction, tissue culture technique, seed germination frequency, weight parameters, copper acetate, leaf explants, stem explants, 2,2‐diphenyl‐1‐picrylhydrazyl reagent‐free radical scavenging activity, antioxidative potential, reducing power potential, flavonoid, phenolic contents, root, shoot, oxidative response, organic molecules, toxicity, secondary metabolites, CuO  相似文献   

9.
In the modern era of science and technology, nanotechnology is becoming popular science field because materials at nanoscale contain improved physical, chemical and biological properties. This study aimed to explore the capacity of bimetallic nanoparticle alloys of silver (Ag), copper (Cu), gold (Au) in different ratios to evaluate the effects on medicinally important plant Eruca sativa. Biochemical parameters of Eruca sativa were studied by applying bimetallic alloy nanoparticles. Seeds of Eruca sativa were germinated on Murashige and Skoog medium with various combinations of nanoparticles suspension employed in concentration of (30 µg/ml). Bimetallic alloys were considered as a stress inducing factor in plants while studying the phytotoxicity. Many secondary metabolites were released because defensive mechanism of plants was active in response to stress. Such secondary metabolites produced in medicinal plants have a great capability in treating the human diseases. In the authors’ study, nanoparticles of small size and of high toxicity effect produced more secondary metabolites like total protein content, total flavonoids and total phenolic content.Inspec keywords: botany, biochemistry, nanoparticles, silver alloys, copper alloys, gold alloys, biomedical materials, nanomedicineOther keywords: seed germination frequency, Eruca sativa biochemical characterisation, nanotechnology, bimetallic nanoparticle alloy, silver alloy, copper alloy, gold alloy, murashige, skoog medium, nanoparticles suspension, secondary metabolite, medicinal plant, human disease, total protein content, total flavonoid, total phenolic content, Au, Ag, Cu  相似文献   

10.
Magnetite (Fe3 O4) nanoparticles (MNPs) have many applications in bioprocesses. This study investigated bioprocess production of Cephalosporin C (CPC) by Acremonium chrysogenum. The effect of MNPs was tested for enhancing the fermentation process. MNPs were synthetised by a straightforward method of co‐precipitation. Various concentrations of MNP (0, 0.0025, 0.005, 0.01, 0.02 and 0.04 g/l) were added to fermentation media of the strain. During fermentation, evaluations were taken for titer of CPC, biomass, pH value and morphology of the strain. Comparison was made between CPC produced in the control medium and that in the nanoparticle enriched media from several consecutive batches; it was determined that MNP addition had a positive effect on the bioprocess and enhanced titer production. The titer of CPC in MNP‐containing medium (0.04 g/l) increased by 60% compared with MNP‐free medium. These results show that MNPs present good potential for improving bioprocesses and enhancing productivity of CPC fermentation by A. chrysogenum.Inspec keywords: fermentation, nanoparticles, iron compounds, precipitation (physical chemistry), bioenergy conversion, pH, productivity, biotechnologyOther keywords: fermentative production, Cephalosporin C, magnetite nanoparticles, Achremoneum chrysogenum, bioprocess production, MNP effect, coprecipitation, MNP concentrations, biomass, pH value, strain morphology, enhanced titer production, MNP‐containing medium, MNP‐free medium, CPC fermentation productivity, A. chrysogenum, Fe2 O4   相似文献   

11.
This study reveals the antibacterial and catalytic activity of biogenic gold nanoparicles (AuNPs) synthesised by biomass of Trichoderma harzianum. The antibacterial activity of AuNPs was analysed by the means of growth curve, well diffusion and colony forming unit (CFU) count methods. The minimum inhibitory concentration of AuNPs was 20 µg/ml. AuNPs at 60 µg/ml show effective antibacterial activity as optical absorption was insignificant. The well diffusion and CFU methods were also applied to analyse the effect of various concentration of AuNPs. Further, the catalytic activity of AuNPs was analysed against methylene blue (MB) as a model pollutant in water. MB was degraded 39% in 30 min in the presence of AuNPs and sodium borohydrate and the rate constant (k) was found to be 0.2 × 10−3 s−1. This shows that the biogenic AuNP is an effective candidate for antibacterial and catalytic degradation of toxic pollutants.Inspec keywords: antibacterial activity, catalysis, nanoparticles, gold, nanofabrication, biomedical materials, nanomedicine, renewable materials, surface diffusion, dyes, water pollution, reaction rate constants, toxicologyOther keywords: antibacterial activity, catalytic activity, biogenic gold nanoparticles, Trichoderma harzianum, biomass, growth curve, diffusion, colony forming unit count methods, minimum inhibitory concentration, optical absorption, CFU methods, methylene blue, water pollutant, catalytic degradation, toxic pollutants, sodium borohydrate, rate constant, Au  相似文献   

12.
The stress conditions imposed by the impact of metal and non‐metal oxide nanoparticles over plant systems enhances the synthesis of reactive oxygen species (ROS), resulting in oxidative damage at cellular level. The objective of this study was to synthesise the gold nanoparticles (GNps) from the leaves protein of Nicotiana tabacum L. cv. xanthi, its characterisation, and response on plant physiology and ROS scavenging activity on plants after exposure to different stresses. The authors have treated N. tabacum L. cv. xanthi plants with 100, 200, 300, 400, and 500 ppm biochemically synthesised GNps and examined physiological as well as biochemical changes. Results showed that biochemically synthesised GNps exposure significantly increased the seed germination (P  < 0.001), root (P  < 0.001), shoot growth (P  < 0.001), and antioxidant ability (P  < 0.05) of plants depending on bioengineered GNPs concentrations. Low concentrations (200–300 ppm) of GNps boosted growth by ∼50% and significantly increase in photosynthetic parameters such as total chlorophyll content (P  < 0.05), membrane ion leakage (P  < 0.05) as well as malondialdehyde (P  < 0.05) content with respect to untreated plants under stress conditions. The high concentration (400–500 ppm) of GNps affected these parameters in a negative manner. The total antioxidant activity was also elevated in the exposed plants in a dose‐dependent manner.Inspec keywords: toxicology, nanoparticles, membranes, biotechnology, oxidation, proteins, tobacco industryOther keywords: biochemical synthesis, gold nanoparticles, leaf protein, tobacco plant, stress conditions, nonmetal oxide nanoparticles, reactive oxygen species, oxidative damage, leaves protein, plant physiology, ROS scavenging activity, xanthi plants, biochemical changes, nicotiana tabacum L. cv. xanthi  相似文献   

13.
Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano‐engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater. The use of these materials in water treatment results in markedly improved performance features like large surface area, good volumetric potential, extra shelf‐lifetime, less mechanical stress, stability under operational conditions with excellent sorption behaviour, no secondary pollution, strong chelating capabilities and they are easy to recover and reuse. This review intends to serve as a one‐stop‐reference by bringing together all the recent research works on nanoparticles synthesis and its advantages as adsorbents in the treatment of heavy metal polluted wastewater that have so far been undertaken, thereby providing researchers with a deep insight and bridging the gap between past, present and future of the elegant nanosorbents.Inspec keywords: wastewater treatment, nanotechnology, adsorption, contaminationOther keywords: heavy metal removal, wastewater, contaminated streams, nanoengineered technology, surface chemistry, chemical engineering fundamentals, nanotechnology, heavy metal contaminated water resources, surface‐engineered nanoadsorbent, rapid adsorption rate, sorption efficiency, heavy metal contaminants, water treatment, surface area, volumetric potential, shelf‐lifetime, mechanical stress, stability, sorption behaviour, chelating capabilities  相似文献   

14.
This study was organised to check the effect of silver nanoparticles and silver nitrate on rice growth against biotic stress. Silver nanoparticles were synthesised by using plant extract as reducing agent, followed by characterisation through UV Vis spectroscopy, XRD, EDS and SEM. Aspergillus application significantly reduced rice plant fresh mass (0.9%), dry mass (0.21%), root length (2.3%), shoot length (5.2%) and root number (1%) in comparison to control. Similarly, leaf area, leaf fresh mass, dry mass and leaf number were also reduced by 23.1, 0.02, 0.11 and 0.9%, respectively. AgNPs and AgNO3 treatments increased the root length (16.2 & 12.8%), shoot length (21 & 20%), root number (8.1 & 6.8%), plant fresh weight (6.4 & 5%) and plant dry weight (4.6 & 3.5%) in 75mg/l treatment of AgNPs and AgNO3 respectively. Similarly, AgNPs and AgNO3 treatment (75 mg/l concentrations) reflected remarkable increase in leaf area (58.8 & 57.2 %), leaf number (4.3 & 3.7 %), leaf fresh weight (1.7 & 1.4 %) and leaf dry weight (0.9 & 0.8 %). Overall AgNPs showed more significant results as compared to AgNO3. The quantity of aflatoxins ranged from 3.1 to 7.7 μg/kg against tolerable limit (4 µg/kg). Overall AgNPs and AgNO3 treatments showed significant results and it could be considered as a strategy for aflatoxin management in rice plants.Inspec keywords: crops, scanning electron microscopy, nanoparticles, X‐ray diffraction, toxicology, agricultural pollution, agricultural safety, silver compounds, ultraviolet spectroscopyOther keywords: biotic stress, silver nanoparticles, AgNPs, silver nitrate, super kernel rice, Kala Shah Kaku research centre, UV–Vis spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, rice plant fresh mass, root number, leaf area, leaf fresh mass, dry mass, leaf number, root length, leaf fresh weight, leaf dry weight, examined rice plants, rice growth, aflatoxins, scanning electron microscopy, Aspergillus application, AgNO3   相似文献   

15.
The study aims to document the effect of starch‐stabilised copper‐based nanoparticles (CuNPs) on the biosynthesis of pharmaceutically valuable secondary metabolites, especially saponins, of the reputed nootropic herb Bacopa monnieri (L.) Pennell. CuNPs were synthesised chemically by the reduction of cupric sulphate pentahydrate with ascorbic acid using starch as the capping agent. They were characterised by UV–visible spectrophotometry, Fourier‐transform infra‐red spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy and zeta potential. The nanoparticles consisted of cuprous oxide and metallic copper, were approximately spherical, polydispersed with diameter <20 nm. Hydroponically grown B. monnieri plants were treated in vivo with the CuNPs between the concentrations of 0–100 mg l−1. Spectrophotometric estimation of the total contents of saponins, alkaloids, phenolics, flavonoids and DPPH radical scavenging capacity from the methanolic extracts of the whole plants showed a hormetic increase in the content of secondary metabolites in a concentration‐dependent manner from 5 mg l−1 until it declined at toxic metabolic concentration. This was accompanied by an increase in ROS markers hydrogen peroxide and malondialdehyde as well as a hormetic effect on activities of phenylalanine ammonia lyase and antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase. CuNPs at sub‐toxic concentrations were found to enhance secondary metabolism and antioxidant capacity in Bacopa monnieri through ROS‐mediated defence response.Inspec keywords: organic compounds, pharmaceuticals, copper compounds, visible spectra, nanofabrication, hydrogen compounds, transmission electron microscopy, reduction (chemical), ultraviolet spectra, electrokinetic effects, X‐ray diffraction, nanoparticles, toxicology, copper, enzymes, Fourier transform infrared spectra, health and safety, agricultural productsOther keywords: starch‐stabilised copper‐based nanoparticles, secondary metabolites, cupric sulphate pentahydrate, capping agent, UV–visible spectrophotometry, X‐ray diffraction, high‐resolution transmission electron microscopy, DPPH radical scavenging capacity, toxic metabolic concentration, antioxidant capacity, saponin content, chemical reduction, ascorbic acid, Fourier transform infrared spectroscopy, zeta potential, hydroponical growth, methanolic extracts, alkaloid content, flavonoid content, malondialdehyde, phenylalanine ammonia lyase, antioxidant enzymes catalase, ascorbate peroxidase, superoxide dismutase, sub‐toxic concentration, spectrophotometric estimation, phenolic content, Pennell plants, Bacopa monnieri L, in vivo treatment, ROS‐mediated defence response, Cu, Cu2 O, H2 O2 , CuSO4 H2 O  相似文献   

16.
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform‐infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X‐ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20–50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.Inspec keywords: gold, silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, cancer, cellular biophysics, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, scanning electron microscopyOther keywords: gold nanoparticle synthesis, silver nanoparticle synthesis, Mukia maderaspatna plant extract, anticancer activity, MCF 7 breast cancer cell line, biomolecule, phytochemical analysis, size 20 nm to 50 nm, healt hcare sector, pharmaceutical sector, nanomaterial, dual staining assay, MTT assay, scanning electron microscopy, energy dispersive X‐ray spectrocopy, high resolution transmission electron microscopy, Fourier transform‐infrared spectroscopy, instrumental technique, ultraviolet‐visible spectroscopy, metal nanoparticle formation, metal ion solution  相似文献   

17.
With the advancement in nanotechnology, nanoparticles are reported to have applications in various fields. Their positive role in the environment, especially in plant ecosystem, is extensively studied nowadays. Among the metal nanoparticles, the silver nanoparticles (AgNP) are receiving special attention because of their ability to increase the growth and yield in many crops. Although many studies are found containing toxic effects of AgNPs the perspective of the present review is to collect the information about their positive role in growth and yield enhancement of crops. During this brief overview, many important crop plants are found to have a positive response towards the application of AgNPs. The appropriate elucidation of physiological, biochemical and molecular mechanism of nanoparticles in plant leads to better plant growth and development. It is concluded from this review that cautious and sensible use of nanotechnology can warrant food security through boosting agricultural production.Inspec keywords: crops, botany, reviews, silver, nanoparticles, nanobiotechnology, biochemistryOther keywords: review, silver nanoparticles, crop plant growth, plant ecosystem, physiological mechanism, molecular mechanism, biochemical mechanism, plant development, food security, agricultural production, Ag  相似文献   

18.
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio‐extract‐assisted methods. Characterisation techniques such as X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X‐ray were used to confirm the synthesis. Although chemical and bio‐assisted methods are suitable choices for NPs synthesis, the bio‐assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, semiconductor growth, antibacterial activity, X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, Fourier transform infrared spectra, nanobiotechnologyOther keywords: chemical methods, bio‐assisted methods, Silybum marianum in vitro plantlets methods, Silybum marianum in vitro callus extract methods, green chemistry, zinc oxide nanoparticles, sodium hydroxide, zinc acetate, X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, bio‐assisted green assembly, antibacterial activity, Klebsiella pneumonia, Bacillus subtilis, ZnO  相似文献   

19.
Current research trends on iron nanoparticles (FeNPs) are extensively focused because of their unique magnetic and electrical properties mostly applicable in essential medical devices. However, their fungicidal property against plant pathogens is very less known until date. Present study demonstrates a green technique for blending of FeNPs by utilising aqueous extract of neem leaf (Azadirachta indica A. Juss.) as reducing agent. Various characterisation techniques such as ultraviolet (UV)–visible spectroscopy, Fourier transform infrared spectroscopy transmission electron microscopy, scanning electron microscopy and X‐ray diffraction were performed for FeNPs. The authors’ results demonstrate the more cluster formation of FeNPs with size distribution of 20–80 nm. The bio‐fabricated FeNPs showed enhanced biocidal activity against economically important phytopathogens of apple such as Alternaria mali, Botryosphaeria dothidea and Diplodia seriata. From the obtained results, it can be suggested that further delve into green synthesis of FeNPs can address future biotechnology concerns to limit the synthesis of FeNPs by conventional methods. Furthermore, the field study on pathogenic fungi can be an effective step to verify their agricultural applications.Inspec keywords: biotechnology, iron, nanoparticles, microorganisms, electric properties, agrochemicals, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, spectrochemical analysis, nanofabricationOther keywords: biofabrication, iron nanoparticles, fungicidal property, apple orchard phytopathogens, magnetic properties, electrical properties, medical devices, plant pathogens, green technique, neem leaf, Azadirachta indica A Juss, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, cluster formation, size distribution, biocidal activity, Alternaria mali, Botryosphaeria dothidea, Diplodia seriata, green synthesis, biotechnology, pathogenic fungi, size 20 nm to 80 nm  相似文献   

20.
Green synthesis of silver nanoparticles (AgNPs) is an interesting issue of the nanoscience and nanotechnology due to their unique properties. In the present study, Ginkgo biloba L. leaf extract was used to synthesise AgNPs. The effects of quantity of leaves, concentration of Ag nitrate (AgNO3), reaction temperature, and pH were studied to discover the optimal synthesis system. In addition, antifungal effect of AgNPs against Setosphaeria turcica was measured through inhibition zone method. The optimal biosynthesis system contained 15 g of leaf, 8 mM AgNO3, and 80°C at pH 9.0. Under mentioned conditions, the resulting synthesised NPs were nearly spherical, with an average size of 14 nm. In tests, AgNPs synthesised at different pH resulted in different inhibition zones, diameters increased gradually at pH from 3.0 to 11.0, while antifungal effect reached maximum at 9.0. Results of this study offer a new approach for biological control plant pathogenic fungi, and it has potential application for screening novel fungistats with high efficiency and low toxicity.Inspec keywords: antibacterial activity, silver, nanoparticles, nanobiotechnology, pHOther keywords: antifungal effect, green synthesised silver nanoparticles, Setosphaeria turcica, nanoscience, nanotechnology, Ginkgo biloba L. leaf extract, reaction temperature, pH, inhibition zone method, inhibition zones, mass 15 g, temperature 80 degC, size 14 nm, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号