首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小样本目标检测(Few-Shot Object Detection,FSOD)中新类相对基类样本少,且新类和基类目标类别不同,导致FSOD方法存在学习到的新类特征判别性不强的问题.为了增强新类元特征的可分性,本文提出了一种嵌入标签语义的元特征再学习和重加权小样本目标检测方法.在小样本训练阶段,本文构建了一个词向量标签语义图产生模块.该产生模块引入标签语义信息生成了词向量标签语义图,用于建模基类和新类间的语义关联.同时,本文构建了一个标签语义嵌入模块.该嵌入模块融入基类和新类间的语义关联,对支持集样本的元特征进行再学习.该再学习过程能够将基类中与新类相关联的特征传递给新类,从而在只有少量新类样本的情况下学习到较好的新类元特征.通过端到端(End-to-End)的训练模型,本文方法增强了新类元特征的可分性,从而提升了新类目标的检测精度.在PASCAL VOC和COCO数据集上的对比和消融实验表明了本文方法的可行性与有效性.与FSODFR方法相比,在PASCAL VOC数据集上2-shot和5-shot下,我们方法的目标检测精度分别提高了2.2%和4.3%.  相似文献   

2.
针对少样本场景中尺度混乱、特征关联性差导致检测不精准的问题,提出一种基于多尺度融合对比机制的检测算法。相比先前方法仅关注表层特征迁移,该方法深刻探讨基类与新类特征空间的潜在联系。通过多尺度递归投影增加特征关联性,利用对比机制充分挖掘基类空间和通道信息,最大化引导新类特征的提取、筛选以及匹配,取得显著性能提升。在Pascal VOC和MS COCO数据集实验中验证了该方法的优越性,为少样本目标检测研究提供了新的理论支撑和研究方向。  相似文献   

3.
针对目前目标检测技术中小目标检测困难问题,提出了一种基于SSD (Single Shot multibox Detector)改进的小目标检测算法Bi-SSD (Bi-directional Single Shot multibox Detector).该算法为SSD的浅层特征设计了小目标特征提升模块,在网络的分类和回归部分结合多尺度特征融合方法和BiFPN (Bi-directional Feature Pyramid Network)结构,设计了6尺度BiFPN分类回归子网络.实验结果表明,在PASCAL VOC和MS COCO目标检测数据集上Bi-SSD相比原始的SSD算法有更好的检测性能.其中VOC2007+2012上Bi-SSD算法的mAP指标达到了78.47%相较SSD算法提升了1.34%,在COCO2017上Bi-SSD算法的m AP达到26.4%提升了接近2.4%.  相似文献   

4.
YOLOv3目标检测算法检测速度快且精度较高,但存在对小目标检测能力不足、边界框定位不准确等问题。提出了一种基于YOLOv3改进的目标检测算法,该算法在YOLOv3的基础上,对网络中的残差块增加旁路连接,进一步进行特征重用,以提取更多的特征信息。同时,采用GIoUloss作为边界框的损失,使网络朝着预测框与真实框重叠度较高的方向去优化。在损失函数中加入Focal loss,减小正负样本不平衡带来的误差。在PASCAL VOC和COCO数据集上的实验结果表明,该算法能够在不影响YOLOv3算法实时性的前提下,提高目标检测的mAP。该算法在PASCAL VOC 2007测试集上达到83.7mAP(IoU=0.5),在COCO测试集上比YOLOv3算法提升2.27mAP(IoU[0.5,0.95])。  相似文献   

5.
现有基于微调的二阶段小样本目标检测方法对新类特征不敏感,易将新类别误判成与它相似度高的基类,影响模型的检测性能。针对上述问题,提出一种融合多尺度和注意力机制的小样本目标检测(MA-FSOD)算法。首先在骨干网络使用分组卷积和大卷积核提取更具类别区分性的特征,并加入卷积注意力模块(CBAM)实现特征的自适应增强;再通过改进的金字塔网络实现多尺度的特征融合,使候选框生成网络(RPN)可以准确找到感兴趣区域(RoI),从多个尺度向分类头提供更丰富的高质量正样本;最后在微调阶段采用余弦分类头进行分类,降低类内方差。在PASCAL-VOC 2007/2012数据集上与基于候选框编码对比损失的小样本目标检测(FSCE)算法相比,MA-FSOD算法对新类的AP50提升了5.6个百分点;在更具挑战性的MSCOCO数据集中,与Meta-Faster-RCNN相比,10-shot和30-shot对应的AP则分别提升了0.1个百分点和1.6个百分点。实验结果表明,相较于一些主流的小样本目标检测算法,MA-FSOD算法能更有效地缓解误分类问题,实现更高精度的小样本目标检测。  相似文献   

6.
针对SSD算法在目标检测过程中对小目标检测的不足,提出了一种基于SSD算法的一阶段目标检测器——FIENet(feature integration and feature enhancement network)。在FIENet中设计了两个模块,一是特征融合模块,该模块对SSD浅层的特征映射信息进行融合以提高小目标检测能力;二是特征增强模块,该模块采用了残差网络(Res2Net)以及注意力机制(attention),对特征融合后的模块以及SSD中的深层特征映射进行增强。为了更好地检测小目标,还调整了浅层特征映射先验框的数量。为了评价FIENet的有效性,在PASCAL VOC2007以及MSCOCO数据集上进行了实验。实验结果表明,在PASCAL VOC2007数据集上检测精度(mAP)较SSD提高3.1个百分点,对小目标bird、bottle、chair、plant检测精度分别提升了3.6、9.5、5.4、5.5个百分点。在COCO数据集上达到29.4%的检测精度(mAP)。实验结果证明FIENet网络在保持实时性的同时可以达到较高的检测精度。  相似文献   

7.
近年来基于深度卷积神经网络的目标检测算法已经成为了主流,Faster R-CNN就是一种主流的目标检测算法。在Faster R-CNN卷积神经网络的基础上,使用DIoU来评价预测框和真实框的距离。针对Faster R-CNN小目标检测效果不好的缺陷,将原算法中的候选区域池化RoI Pooling改进为检测更为精确的区域特征聚集方式RoI Align。此外还改进了原算法中锚框的非极大值抑制方法,增加了算法的平均检测率。最后在公开数据集MS COCO、PASCAL VOC 2007、PASCAL VOC 2012上进行对比训练,在PASCAL VOC 2007测试集上进行验证。实验结果表明改进后的目标检测算法能够有效提高原Faster R-CNN算法的目标检测率。  相似文献   

8.
针对现有的小样本目标检测模型存在对图像全局语义信息考虑不足、输入图像大小不一而导致检测器性能下降的问题,提出了多尺度深层特征加强的CME小样本目标检测模型。利用大量有标签的基类数据和基于残差跳跃的多层卷积神经网络及多尺度特征增强模块训练一个泛化性良好的模型,经过少量有标签的新类数据和基类数据对模型微调,利用微调后的模型进行目标检测。为验证模型的有效性,使用VOC2007和VOC2012数据集对模型进行训练和评估,相关消融实验证明了引入残差跳跃结构的多层卷积神经网络和多尺度特征增强模块的单独使用和组合使用均可进一步增加模型的准确率。在与6个具有代表性的小样本目标检测模型的对比实验中表明,多尺度深层特征加深的CME比最先进的检测器得分平均提高4.75个百分点。  相似文献   

9.
与Anchor Based目标检测算法类似,基于特征点的Anchor Free目标检测算法也面临着在正负样本划分中存在模糊样本的问题,即根据特定阈值和特征点位置划分非正即负的训练样本,网络在对特征点位置处在临界值附近的样本进行训练时会产生较大的损失,使得网络将注意力过于集中在这些模糊样本上,降低了网络的整体检测性能。针对此情况,提出从软标签、损失函数和权重优化3个方面对基于特征点的Anchor Free目标检测算法进行改进,通过充分利用Center Ness参数来缓解模糊样本对网络性能的影响,提高目标检测的准确率。为证明所提方法的有效性,分别在经典的Pascal VOC数据集和MS COCO数据集上使用FCOS目标检测器进行对比实验,最终将检测器在Pascal VOC数据集上的mAP提升至82.16%(提升约1.31%),在MS COCO数据集上的AP50-95提升至35.8%(提升约1.3%)。  相似文献   

10.
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP@IoU[0.5:0.95]提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。  相似文献   

11.
鉴于SSD(Single Shot Multibox Detector)不同层缺乏信息的交互以及模型感受野的限制,提出了一种改进的SSD目标检测算法——ESSD(Enhanced SSD),以提高目标检测的准确性。首先,使用SSD模型中原有的多尺度特征图,利用FPN(Feature Pyramid Networks)的思想,设计了一种跨层信息交互模块,在增强了不同层的语义信息能力的同时减小了不同层的信息差异。然后,为了提高模型的感受野和多尺度检测能力,设计了一种感受野扩增模块。最后,采用批处理归一化层缩短训练时间,以提高模型的收敛速度。为了评价ESSD的有效性,在PASCAL VOC2007测试集以及PASCAL VOC2012测试集上进行了实验。实验结果表明,在PASCAL VOC2007数据集上其mAP为82.1%且检测速度为15.7FPS,相比原有的SSD512,其mAP提升了2.3%;在PASCAL VOC2012测试集上其mAP达到了80.6%,也比SSD512高2.1%。实验证明了ESSD检测器在达到较高检测精度的情况下,仍然可以满足实时性。  相似文献   

12.
作为目标检测的研究热点之一,无锚框算法摒弃大量预定义框的设置而采取逐像素的方式进行预测。即便如此,它仍不能够很好地处理重叠目标。此外,该算法获取图像的全局信息能力较弱且易出现感受野不匹配。因此,提出2种改进方法:多样性感受野注意力机制和全局信息指导特征融合。PASCAL VOC和MS COCO数据集上广泛的实验证实了改进方法的有效性。与基线FCOS相比,本文方法的检测精度在PASCAL VOC上提升了1.4%,在MS COCO上的精确度为42.8%,检测性能明显优于许多先进算法。  相似文献   

13.
小样本目标检测旨在通过少量的样本学习来训练目标检测模型,现有的小样本目标检测方法大多基于经典的目标检测算法。在二阶段的检测方法中,由于新类别样本数量少,产生了许多无关的边界框,导致候选区域的准确率较低。为了解决这个问题,提出了一种基于特征融合的小样本目标检测算法FF-FSOD。该方法采用特征融合的方法进行数据增强,对新类别样本进行补充,扩大样本的覆盖范围,同时引入FPN网络进行多尺度特征提取,再对RPN网络进行改进,引入支持集图像分支,计算支持集图像特征与查询集图像特征的深度互相关性,得到注意力特征图,进而获得更精确的候选框。所提模型的有效性在MS COCO和FSOD数据集上得到了验证,实验结果表明,该方法获得了更精准的候选框,进而提升了检测精度。  相似文献   

14.
在通用的目标检测算法中,目标多变的尺度和特征融合利用一直是限制目标检测任务的难题.针对上述问题,首先文中提出了多路径特征融合模块,模块采用跨尺度跨路径特征融合的方法,强化输入输出特征之间的联系,缓解了特征信息在传递时的稀释问题.同时,文中通过改进注意力模型提出了尺度感知模块,该模块能根据目标的尺度自行地选择感受野大小,从而使模型易于识别多尺度目标.将尺度感知模块嵌入到多路径特征融合模块中,使模型的特征提取和利用能力均得到提升.经实验验证,文中提出的算法在数据集PASCAL VOC和MS COCO上的平均检测精度分别达到了82.2%和38.0%,相比基线FPN Faster RCNN分别提升了1.3%和0.6%,其中对小尺度目标的检测效果提升最为显著.  相似文献   

15.
针对通用目标检测算法在检测小目标时检测精度低的问题,提出一种基于多尺度感受野融合的小目标检测算法S-RetinaNet。该算法采用残差神经网络(residual neural network,ResNet)提取出图像的特征,利用递归特征金字塔网络(recursive feature pyramid network,RFPN)对特征进行融合,通过多尺度感受野融合模块(multiscale receptive field fusion,MRFF)分别处理RFPN的三个输出,提升对小目标的检测能力。实验表明,相比改进前的RetinaNet算法,S-RetinaNet算法在PASCAL VOC数据集上的均值平均精度(mean average precision,mAP)和MS COCO数据集上的平均精度(average precision,AP)分别提高了2.3和1.6个百分点,其中小目标检测精度(average precision small,APS)更为显著,提升了2.7个百分点。  相似文献   

16.
朱香元  聂轰  周旭 《计算机科学》2022,(12):257-263
深度卷积目标检测算法可自动识别农田害虫,实现对害虫的监测和预警,确保农业稳产、增产,在智慧农业中有着重要的应用。针对小目标害虫漏检率高和小样本害虫识别精度低的问题,首先,设计有针对性的小目标和小样本害虫数据增强方法,采用复制粘贴、裁剪、过采样等技术,保证样本规模及位置多样性特性,进而提升其对训练损失的贡献度;其次,构建基于微调的二阶段小样本学习策略,兼顾分阶段学习基类和新类害虫特征,确保在识别新类害虫的同时,不降低基类害虫的识别能力,以满足不断更新害虫数据的实际农业应用场景需求;最后,引入TPH-YOLOv5作为害虫识别算法。在28类害虫图像数据集上进行实验,结果表明,所提方法具有较高的学习效率和识别正确率,其精度、召回率、平均精度均值分别为87.6%,84.9%和85.7%。  相似文献   

17.
为改善一阶段目标检测算法检测精度较差的缺陷,提出一种基于SSD的高效多目标定位检测算法FSD。该算法主要从两个方面对一阶段目标检测算法进行改进:设计了一个更高效的密集残差网络,即R-DenseNet,通过采用一种更窄的密集网络结构形式,在保持特征提取容量的同时降低了计算复杂度,从而提高了算法的检测和收敛性能;改进了损失函数,通过抑制易分样本在损失函数中的权重,提高算法的鲁棒性,改善了目标检测中样本失衡的现象。采用Tensorflow深度学习框架部署网络,并在搭载Nvidia Titan X的Ubuntu上开展实验,实验表明FSD在COCO和PASCAL VOC这两个目标检测数据集上上都取得了最高的检测精度,其中FSD300D的检测精度相比SSD300有3.7%提升,检测相率比SSD有10.87%提升。  相似文献   

18.
为了解决小目标检测在实际应用中的高漏检率、低准确率、低召回率等问题,提出一种基于感受野扩增特征融合的小目标检测算法.首先,对全卷积单阶段目标检测算法(fully convolutional one-stage object detection, FCOS)基础网络特征提取部分增加感受野扩增模块,改善基础网络ResNet-50特征信息提取较少、浅层特征层信息利用率偏低等问题;其次,在特征金字塔部分利用门控思想筛选信息融合,降低无效信息融合的干扰;最后,对7个特征层增加注意力机制模块,提升目标定位精度和分类精度.在COCO2017数据集上的实验结果表明,该算法比传统FCOS算法的检测精度提升2.4%.其中,小目标检测精度提升3.2%,具有更好的检测效果.  相似文献   

19.
针对原始SSD算法对小目标检测效果差而现有改进算法DSSD以及RSSD等检测速度太慢的问题,提出一种基于级联SSD的目标检测算法。在训练时基于Focal Loss和Truncated Gradient改进分类损失函数,增强初始检测效果。在检测时设计小目标强化检测模块与SSD网络级联,单独提取小目标区域对应的高层特征来检测小目标,有效增强对小目标的检测效果。实验结果表明,在PASCAL VOC2007数据集上,与目标检测主流算法SSD相比,具有更高的准确率,与DSSD相比,具有更好的实时性。  相似文献   

20.
于敏  屈丹  司念文 《计算机工程》2022,48(8):249-257
针对经典一阶段目标检测算法RetinaNet难以充分提取不同阶段特征、边界框回归不够准确等问题,提出一个面向目标检测的改进型RetinaNet算法。在特征提取模块中加入多光谱通道注意力,将输入特征中的频率分量合并到注意力处理中,从而捕获特征原有的丰富信息。将多尺度特征融合模块添加到特征提取模块,多尺度特征融合模块包括1个路径聚合模块和1个特征融合操作,路径聚合模块通过搭建自底向上的路径,利用较浅特征层上精确的定位信号增强整个特征金字塔的信息流,特征融合操作通过融合来自每个阶段的特征信息优化多阶段特征的融合效果。此外,在边界框回归过程中引入完全交并比损失函数,从边界框的重叠面积、中心点距离和长宽比这3个重要的几何因素出发,提升回归过程的收敛速度与准确性。在MS COCO数据集和PASCAL VOC数据集上的实验结果表明,与RetinaNet算法相比,改进型RetinaNet算法在2个数据集上的平均精度分别提高了2.1、1.1个百分点,尤其对于MS COCO数据集中较大目标的检测,检测精度的提升效果更加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号