首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well-known that thiazole derivatives are usually found in lead structures, which demonstrate a wide range of pharmacological effects. The aim of this research was to explore the antiviral, antioxidant, and antibacterial activities of novel, substituted thiazole compounds and to find potential agents that could have biological activities in one single biomolecule. A series of novel aminothiazoles were synthesized, and their biological activity was characterized. The obtained results were compared with those of the standard antiviral, antioxidant, antibacterial and anticancer agents. The compound bearing 4-cianophenyl substituent in the thiazole ring demonstrated the highest cytotoxic properties by decreasing the A549 viability to 87.2%. The compound bearing 4-trifluoromethylphenyl substituent in the thiazole ring showed significant antiviral activity against the PR8 influenza A strain, which was comparable to the oseltamivir and amantadine. Novel compounds with 4-chlorophenyl, 4-trifluoromethylphenyl, phenyl, 4-fluorophenyl, and 4-cianophenyl substituents in the thiazole ring demonstrated antioxidant activity by DPPH, reducing power, FRAP methods, and antibacterial activity against Escherichia coli and Bacillus subtilis bacteria. These data demonstrate that substituted aminothiazole derivatives are promising scaffolds for further optimization and development of new compounds with potential influenza A-targeted antiviral activity. Study results could demonstrate that structure optimization of novel aminothiazole compounds may be useful in the prevention of reactive oxygen species and developing new specifically targeted antioxidant and antibacterial agents.  相似文献   

2.
Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR) of the designed compounds was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular 1C4 conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4–8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4–8 were 0.49 < Pa < 0.60 (where Pa is probability ‘to be active’) as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4–8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4–8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.  相似文献   

3.
In this work we report the antibacterial activity of alkylaminophenols. A series of such compounds was prepared by a multicomponent Petasis‐borono Mannich reaction starting from salicylaldehyde and its derivatives. The obtained compounds were tested against a large panel of microorganisms, Gram‐positive and Gram‐negative bacteria, and a yeast. Among the several tertiary amine derivatives tested, indoline‐derived aminophenols containing a nitro group at the para‐phenol position showed considerable activity against bacteria tested with minimal inhibitory concentrations as low as 1.36 μm against Staphyloccocus aureus and Mycobacterium smegmatis. Cytotoxicity of the new para‐nitrophenol derivatives was observed only at concentrations much higher than those required for antibacterial activity.  相似文献   

4.
An enzymatic route for phosphorous–carbon bond formation was developed by discovering new promiscuous activity of lipase. We reported a new metal-free biocatalytic method for the synthesis of pharmacologically relevant β-phosphonomalononitriles via a lipase-catalyzed one-pot Knoevenagel–phospha–Michael reaction. We carefully analyzed the best conditions for the given reaction: the type of enzyme, temperature, and type of solvent. A series of target compounds was synthesized, with yields ranging from 43% to 93% by enzymatic reaction with Candida cylindracea (CcL) lipase as recyclable and, a few times, reusable catalyst. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The applicability of the same catalyst in the synthesis of β-phosphononitriles is also described. Further, the obtained compounds were validated as new potential antimicrobial agents with characteristic E. coli bacterial strains. The pivotal role of such a group of phosphonate derivatives on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics. The impact of the β-phosphono malonate chemical structure on antimicrobial activity was demonstrated. The crucial role of the substituents attached to the aromatic ring on the inhibitory action against selected pathogenic E. coli strains was revealed. Among tested compounds, four β-phosphonate derivatives showed an antimicrobial activity profile similar to that obtained with currently used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained compounds constitute a convenient platform for further chemical functionalization, allowing for a convenient change in their biological activity profile. It should also be noted that the cost of the compounds obtained is low, which may be an attractive alternative to the currently used antimicrobial agents. The observed results are especially important because of the increasing resistance of bacteria to various drugs and antibiotics.  相似文献   

5.
A new family of surfactants, aminimides, has been screened forin vitro antimicrobial activity. These compounds are active against both bacteria and yeast, activity being a function of chain length. Maximum activity for acetimide and acrylimide amine derivatives was extablished with chain lengths of C14–C16. Homologous compounds with lower or higher chain lengths were less active. While showing low antimicrobial activity against gram negative bacteria, mixtures containing C12 and C16 gave good activity against gram negative strains without losing gram positive activity. Aminimides gave low acute LD50’s (200–400 mg/kg) when tested in mice by intraperitoneal injection.  相似文献   

6.
A series of new 2-aminobenzamide derivatives (1–10) has been synthesized in good to excellent yields by adopting both conventional and/or a time-efficient microwave assisted methodologies starting from isatoic anhydride (ISA) and characterized on the basis of their physical, spectral and microanalytical data. Selected compounds of this series were then tested against various bacterial (Bacillus subtilis (RCMB 000107) and Staphylococcus aureus (RCMB 000106). Pseudomonas aeruginosa (RCMB 000102) and Escherichia coli (RCMB 000103) and fungal strains (Saccharomyces cerevisiae (RCMB 006002), Aspergillus fumigatus (RCMB 002003) and Candida albicans (RCMB 005002) to explore their potential as antimicrobial agents. Compound 5 was found to be the most active compound among those tested, which showed excellent antifungal activity against Aspergillus fumigatus (RCMB 002003) more potent than standard Clotrimazole, and moderate to good antibacterial and antifungal activity against most of the other strains of bacteria and fungi. Furthermore, potential pharmacophore sites were identified and their activity was related with the structures in the solution.  相似文献   

7.
A new class of antimicrobial polymers consisting of PPO (polyphenylene oxide) was synthesized, and the antimicrobial activities of these polymers were investigated. This was accomplished by selective α-bromination of PPO (BPPO) followed by quaternization reactions with various tertiary amines or phosphines. Two types of BPPO were prepared, and the antimicrobial activities of the quaternized polymers were tested against Gram-positive bacteria (S. Epidermidis) and Gram-negative bacteria (Escherichia. coli). The triphenylphosphonium-modified polymer showed excellent antibacterial activity against both types of bacteria. Generally, the thermal stability of phosphonium-modified BPPO was superior to that of the ammonium analog, and the increase in the functionalization of the polymer backbone resulted in improved antimicrobial activity.  相似文献   

8.
There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure–activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.  相似文献   

9.
利用微量肉汤稀释法测定3-对烯-1-胺(1)及其席夫碱衍生物(2a~2l)对革兰氏阳性菌金黄色葡萄球菌、革兰氏阴性菌肺炎克雷伯氏菌及真菌白色念珠菌的抑菌活性,并讨论了构效关系。结果表明:3-对烯-1-胺及其部分席夫碱衍生物对这3种菌具有一定的抑菌活性,其中化合物1对金黄色葡萄球菌的抑菌活性最强,最小抑菌浓度(MIC)值为56.25 mg/L;化合物2h和2i对肺炎克雷伯氏菌的抑菌活性最强,MIC值均为112.5 mg/L;化合物2l对白色念珠菌的抑菌活性最强,MIC值为28.125 mg/L。构效关系分析结果表明:向3-对烯-1-胺席夫碱衍生物中引入Br、Cl等卤素后,能显著增强抑菌活性;含有吡啶环的3-对烯-1-胺席夫碱衍生物对真菌白色念珠菌的抑菌活性明显要高于含呋喃环、吡咯环或噻吩环的3-对烯-1-胺席夫碱衍生物。  相似文献   

10.
Sixteen new Ciprofloxacin derivatives were designed and successfully synthesized. In an in silico experiment, lipophilicity was established for obtained compounds. All compounds were screened for antimicrobial activity using standard and clinical strains. As for Gram-positive hospital microorganisms, all tested derivatives were active. Measured MICs were in the range 1–16 µg/mL, confirming high antimicrobial potency. Derivative 12 demonstrated activity against all standard Gram-positive Staphylococci, within the range of 0.8–1.6 µg/mL and was confirmed as the leading structure with MICs 1 µg/mL for S. pasteuri KR 4358 and S. aureus T 5591 (clinical strains). All compounds were screened for their in vitro cytotoxic properties via the MTT method. Three of the examined compounds (3, 11 and 16) showed good activity against cancer cells, and in parallel were found not to be cytotoxic toward normal cells. Doxorubicin SI ranged 0.14–1.11 while the mentioned three ranged 1.9–3.4. Selected Ciprofloxacin derivatives were docked into the crystal structure of topoisomerase II (DNA gyrase) in complex with DNA (PDB ID: 5BTC). In summary, leading structures were established (3, 11, 12 and 16). We have observed poor results in preformed studies for disubstituted derivatives, suggesting that 3-oxo-4-carboxylic acid core is the active DNA-gyrase binding site, and when structural changes were made in this fragment, there was an observed decrease in antibacterial potency.  相似文献   

11.
We have carried out mixed micellization of pentanediyl-α,ω-bis(dimethyl cetylammonium bromide) (G5) with conventional cationic cetylpyridinium chloride (CPC) and nonionic polyoxyethylene (20) cetyl ether (C16E20) in aqueous media and explored their antimicrobial activity in single and binary systems against Escherichia coli (E.coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The compounds tested showed excellent antibacterial activity: 0.76–3.38 g/l minimum inhibitory concentration (MIC) and were more active against gram +ve bacteria. For surfactant mixtures G5-C16E20 > G5-CPC, the ionic-nonionic binary surfactant showed greater antibacterial activity. The experimental results of this study may be profitably used to understand and predict the antibacterial activity of gemini-conventional surfactant systems and provide valuable information for selection of surfactant for microbiocidal action.  相似文献   

12.
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95–15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.  相似文献   

13.
Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1), 3,5,7,8,4′-pentahydroxy-3′-methoxy flavone (2), 3-O-methylquercetin (3), 3,3′-di-O-methylquercetin (4), 3,3′-di-O-methylquercetin-7-O-β-d-glucopyranoside (5), isorhamentin-3-O-β-d-rutinoside (6), 8-O-methylretusin (7), 8-O-methylretusin-7-O-β-d-glucopyranoside (8), salicylic acid (9), p-hydroxybenzoic acid (ferulic acid) (10), and 4-hydroxy-3-methoxy cinnamic acid (11). They were sorted as flavonols (1–6), soflavones (7 and 8), and phenolic acids (9–11). Among the compounds, flanools 1–4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC) values of 50–150 μg/mL, and median inhibitory concentration (IC50) values of 26.8–125.1 μg/mL. The two isoflavones (7 and 8) showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11) showed strong antibacterial activity with IC50 values of 28.1–149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.  相似文献   

14.
Two new 14-membered cyclopeptide alkaloids, Oxyphylline B (4) and Oxyphylline C (5), along with three known 13-membered cyclopeptide alkaloids, were isolated from stem and roots of Zizyphus oxyphylla Edgew. The compounds were tested for antibacterial activity. Oxyphylline B (4) showed comparatively better antibacterial activities against Escherichia coli (MIC, 5 μg/mL) than other compounds. This compound also exhibited weak antimicrobial activities against Staphylococcus aureus (MIC, 25 μg/mL), Pseudomonas aeruginosa (MIC, 50 μg/mL) and Salmonella typhi (MIC, 50 μg/mL).  相似文献   

15.
Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production.  相似文献   

16.
Previously, we identified a potent antimicrobial analogue of temporin L (TL), [Pro3]TL, in which glutamine at position 3 was substituted with proline. In this study, a series of analogues in which position 3 is substituted with non-natural proline derivatives, was investigated for correlations between the conformational properties of the compounds and their antibacterial, cytotoxic, and hemolytic activities. Non-natural proline analogues with substituents at position 4 of the pyrrolidine ring were considered. Structure–activity relationship (SAR) studies of these analogues were performed by means of antimicrobial and cytotoxicity assays along with circular dichroism (CD) and NMR spectroscopic analyses for selected compounds. The most promising peptides were additionally evaluated for their activity against some representative veterinary microbial strains to compare with those from human strains. We identified novel analogues with interesting properties that make them attractive lead compounds.  相似文献   

17.
The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.  相似文献   

18.
Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.  相似文献   

19.
Corals are constantly exposed to ubiquitous microbes. Detrimental effects of microbes on corals include surface fouling and disease. To prevent fouling and disease, corals need to resist microbial colonization and invasion. One way that this could be achieved is by chemical defense. Extracts from 100 scleractinian coral species (44 genera and 13 families) were screened for antimicrobial activity against seven microbe species (Alteromonas rubra, Photobacterium damsela, Vibrio harveyi, Vibrio alginolyticus, Vibrio parahaemolyticus, Synechococcus sp., and Staphylococcus aureus). Activity against Synechococcus sp. (a marine cyanobacterium) was recorded in 100 coral species, and eight of these coral species also inhibited the growth of marine bacteria. The extent of microbial colonization on coral surfaces was assessed in 20 scleractinian species to test the hypothesis that fewer microbes occur on corals that have antimicrobial compounds. Bacterial counts exceeded cyanobacterial counts on coral surfaces, and coral species with antibacterial activity had the fewest bacteria on their surfaces. Thus, corals with less heavily colonized surfaces chemically inhibit microbial colonization.  相似文献   

20.
A series of fatty acid amides derived from (R)‐ and (S)‐ricinoleic acid and 4 cyclic and acyclic amines were synthesized in a proecological solvent‐free process with yields ranging from 43 to 88%. All S‐configured compounds and both enantiomers of amide with 2‐amino‐2‐methyl‐1‐propanol were obtained and studied in terms of biological activity for the first time. The evaluation of antimicrobial activity of (R)‐ and (S)‐ricinoleic acid derivatives against 13 different microorganisms representing Gram‐negative and Gram‐positive bacteria, yeast, and molds showed significant inhibitory activity against Gram‐positive bacteria, especially Micrococcus luteus and Bacillus subtilis, and against selected molds. Ethanolamine‐ and pyrrolidine‐derived amides showed the most promising antibacterial and antimold potential. Derivatives from ricinoleic acid and pyrrolidine were the most active against both selected molds, Aspergillus brasiliensis and Penicillium expansum. Moreover, the R‐configured analog was the most potent against B. subtilis. The amides of ricinoleic acid with ethanolamine exhibited significant potential to Staphylococcus aureus, which distinguished them from the rest of tested derivatives to which this bacterium was very resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号