首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanomaterials play a vital role in textile industries due to their unique properties and applications. There is an increase in the use of nanoscale phyto products in textiles to control the bacterial infection in fabrics. Here, natural herbal nanoparticles of different sizes were prepared from shade‐dried Aloe vera plant leaves using ball milling technique without any additives. The amorphous herbal A. vera nanoparticles possess an average particle size of 40 ± 2 nm and UV‐absorption maximum at 269 nm. A. vera nanopowders–chitosan nanocomposites were prepared and coated on cotton fabrics using pad‐dry cure method. The evaluation of antibacterial activity against Escherichia coli (22.05 ± 0.06 mm) and Staphylococcus aureus (27.17 ± 0.02 mm), UV‐protection properties (UV‐protection factor = 57.2 ± 0.1), and superhydrophobic nature (155 ± 3°) of the prepared herbal nanoparticles and their composites were analysed by disc diffusion, UV–visible spectral analysis, and contact angle analysis. Understanding the functional properties of herbal nanoparticles, coated particles on fabrics highlights their potential applications in protective clothing with better antimicrobial properties, hydrophobicity, and UV‐protection properties. This study of using A. vera herbal nanoparticles in textiles significantly enhances the fabric performance to develop protective textile fabrics in defence and biomedical fields.Inspec keywords: nanoparticles, particle size, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, hydrophobicity, ultraviolet spectra, visible spectra, radiation protection, textile fibres, cotton fabrics, ball milling, X‐ray diffraction, light scattering, scanning electron microscopy, X‐ray fluorescence analysis, fluorescence, amorphous state, nanocomposites, filled polymers, protective coatings, curing, microorganisms, biodiffusion, contact angle, surface morphology, protective clothingOther keywords: UV‐blocking, antimicrobial properties, disc diffusion, UV‐visible spectral analysis, contact angle analysis, morphological characteristics, protective clothing, protective textile fabrics, biomedical fields, superhydrophobic nature, UV‐protection factor, UV‐protection properties, Staphylococcus aureus, Escherichia coli, pad‐dry cure method, cotton fabrics, A. vera nanopowders‐chitosan nanocomposites, UV‐absorption maximum, average particle size, amorphous herbal A. vera nanoparticles, X‐ray fluorescence spectrometry, scanning electron microscopy, dynamic light scattering, UV‐visible spectrophotometry, X‐ray diffraction, ball milling, shade‐dried Aloe vera plant leaves, natural herbal nanoparticle size, bacterial infection, nanoscale phyto products, textile industries, nanomaterials, textile applications  相似文献   

2.
Silver nanoparticles (SNPs) were synthesised by using the Arial part extract of Dorema ammoniacum D. and characterised by employing UV–visible spectroscopy, Fourier transform infrared spectroscopy and X‐ray diffraction techniques. Transmission electron microscopy and field emission scanning electron microscopy were applied to investigate the morphological structure of the bio‐synthesised SNPs. The antimicrobial activity of SNPs was studied against Gram positive (Bacillus cereus and Staphylococcus aureus) and Gram‐negative (Escherichia coli and Salmonella typhimurium) bacteria by employing the disk diffusion agar process. An extremely antimicrobial effect was observed for SNPs. Utilising D. ammoniacum D. as a mediator for the synthesis of SNPs helped to save time and cost.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, particle size, antibacterial activity, visible spectra, ultraviolet spectra, microorganisms, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, surface diffusionOther keywords: green synthesis, silver nanoparticles, Dorema ammoniacum D. extract, antimicrobial analysis, Arial part extract, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, morphological structure, bio‐synthesised SNPs, antimicrobial activity, gram positive Bacillus cereus bacteria, gram positive Staphylococcus aureus bacteria, gram‐negative Escherichia coli bacteria, gram‐negative Salmonella typhimurium bacteria, disk diffusion agar process, antimicrobial effect, Ag  相似文献   

3.
The last decade has observed a rapid advancement in utilising biological system towards bioremediation of metal ions in the form of respective metal nanostructures or microstructures. The process may also be adopted for respective metal nanoparticle biofabrication. Among different biological methods, bacteria‐mediated method is gaining great attention for nanoparticle fabrication due to their eco‐friendly and cost‐effective process. In the present study, silver nanoparticle (AgNP) was synthesised via continuous biofabrication using Aeromonas veronii, isolated from swamp wetland of Sunderban, West Bengal, India. The biofabricated AgNP was further purified to remove non‐conjugated biomolecules using size exclusion chromatography, and the purified AgNPs were characterised using UV–visible spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy (TEM). Additionally, the presence of proteins as capping and stabilising agents was confirmed by the amide‐I and amide‐II peaks in the spectra obtained using attenuated total reflection Fourier transform infrared spectroscopy. The size of biofabricated AgNP was 10–20 nm, as observed using TEM. Additionally, biofabricated AgNP shows significant antibacterial potential against E. coli and S. aureus. Hence, biofabricated AgNP using Aeromonas veronii, which found resistant to a significant concentration of Ag ion, showed enhanced antimicrobial activity compared to commercially available AgNP.Inspec keywords: silver, nanoparticles, microorganisms, nanofabrication, purification, chromatography, ultraviolet spectra, visible spectra, X‐ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, proteins, molecular biophysics, biochemistry, molecular configurations, attenuated total reflection, Fourier transform infrared spectra, particle size, antibacterial activity, biomedical materials, nanomedicineOther keywords: capping agents, stabilising agents, amide‐I peaks, amide‐II peaks, attenuated total reflection Fourier transform infrared spectroscopy, antibacterial potential, E. coli, S. aureus, Aeromonas veronii, antimicrobial activity, size 10 nm to 20 nm, Ag, proteins, TEM, transmission electron microscopy, field emission scanning electron microscopy, X‐ray diffraction, UV‐visible spectroscopy, size exclusion chromatography, nonconjugated biomolecules, purification, swamp wetland, Aeromonas veronii, cost‐effective process, eco‐friendly, bacteria‐mediated method, biological methods, metal nanoparticle biofabrication, microstructures, metal nanostructures, metal ions, bioremediation, biological system, mangrove swamp, bacteria, silver nanoparticles  相似文献   

4.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

5.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

6.
Through this study an eco‐friendly, simple, efficient, cheap and biocompatible approach to the biosynthesis and stabilisation of CuO nanoparticles (NPs) using the Euphorbia Chamaesyce leaf extract is presented. The CuO NPs were monitored and characterised by field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope and UV‐visible spectroscopy. The biosynthesised CuO NPs showed good catalytic activity for the reduction of 4‐nitrophenol (4‐NP) in water during 180 s and reused 4 times without considerable loss of activity.Inspec keywords: copper compounds, nanoparticles, nanofabrication, catalysis, reduction (chemical), field emission electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: biosynthesis, CuO nanoparticles, Euphorbia Chamaesyce leaf extract, catalytic activity, 4‐nitrophenol reduction, nanoparticle stabilisation, field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope, UV‐visible spectroscopy, CuO  相似文献   

7.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

8.
A biosynthetic method for the production of selenium nanoparticles under ambient temperature and pressure from sodium selenite was developed using Gram‐negative bacterial strain Escherichia coli ATCC 35218. Bacteriogenic nanoparticles were methodologically characterized employing UV‐vis, XRD, Raman spectroscopy, SEM, TEM, DLS and FTIR techniques. Generation of nanoparticles was visualized from the appearance of red colour in the selenite supplemented culture medium and broad absorption bands in the UV‐vis. Biofabricated nanoparticles were spherical, polydisperse, ranged from 100‐183 nm and the average particle size was about 155 nm. Based on selected‐area electron diffraction, XRD patterns; and Raman spectroscopy the nanospheres were found to be amorphous. IR spectrum revealed the involvement of bacterial proteins in the reduction of selenite and stabilization of nanoparticles. Used bacterial strain demonstrated efficient selenite reduction capability which was evident from 89.2% of selenium removal within 72 h at a concentration of 1 mM. Observation noted in the current study highlight the importance of bacterial reduction in selenium nanoparticle generation which can be scaled up for commercial production. Also, the bacteriogenic, amorphous nanoparticles can also be used as nutritional supplements for humans since selenium nanoparticles of 5‐200 nm are bioavailable and known to induce seleno enzymes involved in antioxidant defence.Inspec keywords: Fourier transform infrared spectra, transmission electron microscopy, scanning electron microscopy, electron diffraction, ultraviolet spectra, microorganisms, X‐ray diffraction, nanofabrication, Raman spectra, visible spectra, nanoparticles, particle size, seleniumOther keywords: bacteriogenic synthesis, selenium nanoparticles, Escherichia coli ATCC 35218, structural characterisation, biosynthetic method, gram negative bacterial strain, UV–visible spectroscopy, X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, particle size, selected area electron diffraction, bacteriological reduction, seleno enzymes, size 100 nm to 183 nm, Se  相似文献   

9.
The present work is emphasised on the bio‐fabrication of silver and gold nanoparticles in a single step by a microwave‐assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV–Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face‐centred cubic geometry was confirmed by the X‐ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2‐diphenyl‐1‐picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.Inspec keywords: transmission electron microscopy, visible spectra, surface plasmon resonance, nanofabrication, ultraviolet spectra, field emission electron microscopy, reduction (chemical), nanocomposites, microorganisms, nanoparticles, dyes, silver, X‐ray diffraction, nanomedicine, gold, antibacterial activity, electron diffraction, infrared spectra, particle size, Fourier transform spectra, scanning electron microscopy, catalysis, crystal growth from solutionOther keywords: synthesised nanoparticles, gold nanoparticles, catalytic activities, electron diffraction patterns, antimicrobial activities, antioxidant activities, transmission electron microscopy images, X‐ray diffraction, 2,2‐diphenyl‐1‐picrylhydrazyl assay, Synedrella nodiflora, UV–Vis spectrum, silver nanoparticles, biofabrication, surface plasmon resonance, Fourier transform infrared spectroscopy, face‐centred cubic geometry, area electron diffraction patterns, pathogenic strains, agar well diffusion method, anthropogenic pollutant dyes, Congo red, eosin Y, wavelength 413.0 nm, wavelength 535.0 nm, Au, Ag  相似文献   

10.
In this study, the authors reported the first synthesis process of silver iodide (AgI) nanoparticles (NPs) by pulsed laser ablation of the AgI target in deionised distilled water. The optical and structural properties of AgI NPs were investigated by using UV–vis absorption, X‐ray diffraction, scanning electron microscope (SEM), energy dispersive X‐ray, Fourier transform infrared spectroscopy, and transmission electron microscope (TEM). The optical data showed the presence of plasmon peak at 434 nm and the optical bandgap was found to be 2.6 eV at room temperature. SEM results confirm the agglomeration and aggregation of synthesised AgI NPs. TEM investigation showed that AgI NPs have a spherical shape and the average particle size was around 20 nm. The particle size distribution was the Gaussian type. The results showed that the synthesised AgI NPs have antibacterial activities against both bacterial strains and the activities were more potent against gram‐negative bacteria.Inspec keywords: antibacterial activity, nanoparticles, X‐ray chemical analysis, particle size, transmission electron microscopy, X‐ray diffraction, nanofabrication, scanning electron microscopy, visible spectra, ultraviolet spectra, silver compounds, pulsed laser deposition, Fourier transform infrared spectra, optical constants, energy gap, aggregationOther keywords: synthesis process, pulsed laser ablation, AgI target, deionised distilled water, optical properties, structural properties, UV–vis absorption, X‐ray diffraction, transmission electron microscope, optical data, optical bandgap, antibacterial activities, silver iodide nanoparticles, energy dispersive X‐ray analysis, SEM, wavelength 434.0 nm, temperature 293 K to 298 K, AgI  相似文献   

11.
Green synthesis of nanoparticles has gained importance due to its eco‐friendly, low toxicity and cost effective nature. This study deals with the biosynthesis of silver nanoparticles (AgNPs) from the bark extract of Amentotaxus assamica. The AgNPs have been synthesised by reducing the silver ions into stable AgNPs using the bark extract of Amentotaxus assamica under the influence of sunlight irradiation. The characterisation of the biosynthesised AgNPs was carried out by UV–vis spectroscopy, X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray analysis. The UV–vis spectrum showed a broad peak at 472 nm. Also, the XRD confirmed the crystalline structure of the AgNPs. Moreover, the SEM analysis revealed that the biosynthesised AgNPs were spherical in shape. Also, dynamic light scattering techniques were used to evaluate the size distribution profile of the biosynthesised AgNPs. Furthermore, the biosynthesised AgNPs showed a prominent inhibitory effect against both Escherichia coli (MTCC 111) and Staphylococcus aureus (MTCC 97). Thus the biosynthesis of AgNPs from the bark extract of Amentotaxus assamica is found to eco‐friendly way of producing AgNPs compared to chemical method.Inspec keywords: X‐ray chemical analysis, microorganisms, transmission electron microscopy, nanoparticles, toxicology, scanning electron microscopy, ultraviolet spectra, particle size, Fourier transform spectra, X‐ray diffraction, antibacterial activity, visible spectra, infrared spectra, nanomedicine, silverOther keywords: stable AgNP, biosynthesised AgNP, SEM analysis, sunlight irradiation, silver ions, silver nanoparticle, amentotaxus assamica, biosynthesis, escherichia coli  相似文献   

12.
Microbial mediated biological synthesis of metallic nanoparticles was carried out ecofriendly in the present study. Silver nanoparticles (AgNPs) were extracellularly biosynthesised from Streptomyces griseorubens AU2 and extensively characterised by ultraviolet–visible (UV–vis) and Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy and X‐ray diffraction analysis. Elemental analysis of nanoparticles was also carried out using energy dispersive X‐ray spectroscopy. The biosynthesised AgNPs showed the characteristic absorption spectra in UV–vis at 422 nm which confirmed the presence of metallic AgNPs. According to the further characterisation analysis, the biosynthesised AgNPs were found to be spherical and crystalline particles with 5–20 nm average size. Antioxidant properties of the biosynthesised AgNPs were determined by 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay and was found to increase in a dose‐dependent matter. The identification of the strain was determined by molecular characterisation method using 16s rDNA sequencing. The present study is the first report on the microbial biosynthesis of AgNPs using S. griseorubens isolated from soil and provides that the active biological components found in the cell‐free culture supernatant of S. griseorubens AU2 enable the synthesis of AgNPs.Inspec keywords: silver, microorganisms, nanoparticles, nanofabrication, DNA, molecular biophysics, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, absorption coefficients, cellular biophysicsOther keywords: silver nanoparticles, Streptomyces griseorubens AU2, soil, antioxidant activity, microbial mediated biological synthesis, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, elemental analysis, energy dispersive X‐ray spectroscopy, absorption spectra, spherical particles, crystalline particles, 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay, strain identification, molecular characterisation method, rDNA sequencing, active biological components, cell‐free culture supernatant, wavelength 422 nm, size 5 nm to 20 nm, Ag  相似文献   

13.
The biological way of metallic nanoparticles production using ecofriendly biocontrol agents are largely used to control many plant pathogenic microorganisms in agriculture. Hence, an attempt was made to evaluate the potential of suppressive activity of nanoparticles produced by an indigenous isolate, Trichoderma atroviride against a tea pathogenic fungus namely Phomopsis theae. The presence of biosynthesised nanoparticles was primarily confirmed through ultraviolet–visible spectroscopy analysis and was characterised using X‐ray diffraction and scanning electron microscopy‐energy dispersive X‐ray analysis to delineate the size, shape and nature of particles. Further, Fourier transform infrared analysis revealed the functional biomolecules responsible for capping and stabilisation of nanoparticles. In addition, culture filtrate containing nanoparticles was subjected to invitro antifungal studies which revealed a considerable suppression on the growth of P. theae. The biosynthesised nanoparticles were found to be active even after 3 months which established and confirmed the stability. Finally, field experiments conducted with soil application and wound dressing of nanoparticles exhibited a significant reduction in canker size when plants treated with gold followed by silver nanoparticles. Similarly, improvement in leaf yield was noted in response to these treatments. The above study confirmed the efficacy of metallic nanoparticles in management of stem disease in tea plantation.Inspec keywords: diseases, gold, silver, nanoparticles, nanobiotechnology, nanofabrication, particle size, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, ultraviolet spectra, visible spectra, microorganisms, Fourier transform infrared spectra, molecular biophysics, antibacterial activityOther keywords: biosynthesis, silver nanoparticles, gold nanoparticles, Trichoderma atroviride, biological control, Phomopsis canker disease, tea plants, metallic nanoparticles, ecofriendly biocontrol agents, plant pathogenic microorganisms, agriculture, indigenous isolate, tea pathogenic fungus, Phomopsis theae, ultraviolet‐visible spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, particle size, particle shape, Fourier transform infrared analysis, functional biomolecules, invitro antifungal study, P. theae growth, soil application, wound dressing, stem disease, Au, Ag  相似文献   

14.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

15.
In this study, CuO nanoparticles supported on the seashell (CuO NPs/seashell) was prepared using Rumex crispus seeds extract as a chelating and capping agent. The prepared nanocomposite was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and transmission electron microscopy. The particle size of CuO NPs on the seashell sheets was in the range of 8–60 nm. Catalytic ability of CuO NPs/seashell was investigated for the reduction of 4‐nitrophenol (4‐NP) and Congo red (CR). It was observed that catalyst can be easily recovered and reused several times without any significant loss of catalytic efficiency.Inspec keywords: nanocomposites, nanoparticles, catalysis, dyes, Fourier transform infrared spectra, X‐ray diffraction, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, particle size, copper compoundsOther keywords: CuO, size 8 nm to 60 nm, Congo red, 4‐nitrophenol, particle size, transmission electron microscopy, energy dispersive X‐ray spectroscopy, field emission scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, nanocomposite, capping agent, chelating agent, dye reduction, catalytic application, Rumex crispus seeds extract, seashell surface, nanoparticles, green synthesis  相似文献   

16.
CuO nanoparticles (NPs) were prepared by Convolvulus percicus leaves extract as a reducing and stabilising agent. The green synthesised copper oxide NPs was characterised by transmission electron microscope, energy dispersive X‐Ray spectroscopy, X‐ray diffraction, Fourier transform infrared and ultraviolet‐visible analysis. The activities of the CuO NPs as catalyst were tested in the formation of C‐N and C‐O bonds. The N ‐arylated and O ‐arylated products of amides, N‐H heterocycles and phenols were obtained in excellent yields. Furthermore, the separation and recovery of copper oxide NPs was very simple, effective and economical. The recovered catalyst can be reused several times without significant loss of its catalytic activity. Moreover, the antibacterial activity of these NPs was tested against two human pathogenic microbes and showed significant antimicrobial activity against these pathogenic bacteria.Inspec keywords: copper compounds, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, microorganisms, catalysts, transmission electron microscopy, X‐ray chemical analysis, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, catalysisOther keywords: green synthesis, copper oxide nanoparticles, Convolvulus percicus L. aqueous extract, reusable catalysts, cross‐coupling reactions, antibacterial activity, reducing agent, stabilising agent, transmission electron microscope, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectra, ultraviolet‐visible spectra, C‐N bonds, C‐O bonds, N‐arylated products, O‐arylated products, amides, N‐H heterocycles, phenols, catalytic activity, human pathogenic microbes, antimicrobial activity, CuO  相似文献   

17.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

18.
In this study, the authors report a simple and eco‐friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum‐graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG‐AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG‐AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG‐AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG‐AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.Inspec keywords: antibacterial activity, cancer, biomedical materials, silver, nanofabrication, nanomedicine, nanoparticles, microorganisms, skin, cellular biophysics, biochemistry, light scattering, X‐ray chemical analysis, X‐ray diffraction, Fourier transform infrared spectra, particle sizeOther keywords: antibacterial potential, anticancer potential, antioxidant potential, silver nanoparticles, Trigonella foenum‐graecum seed extract, eco‐friendly method, biosynthesis, reaction time, AgNO3 concentration, TFG extract amount, physicochemical characterisation, dynamic light scattering, field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, size determination, TFG‐AgNPs size, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, skin cancer cell line A431, Ag  相似文献   

19.
Selenium (Se) is a rare and essential element for the human body and other living organisms because of its role in the structure of several proteins and having anti‐oxidant properties to reduce oxidative stress at cells. Some microorganisms can absorb Se oxyanions and convert them into zero‐valent Se (Se0) in the nanoscale dimensions, which can be used for producing Se nanoparticles (SeNPs). In the present study, SeNPs were intracellularly biosynthesised by yeast Nematospora coryli, which is an inexpensive method and does not involve using materials hazardous for human and environment. The produced NPs were refined by a two‐phase system and then characterised and identified by ultraviolet–visible, X‐ray diffraction, X‐ray fluorescence, transmission electron microscope, and Fourier transform infrared spectroscopy analyses. The structural analysis of biosynthesised SeNPs showed spherical‐shaped NPs with size ranging from 50 to 250 nm. Also, extracted NPs were applied to explore their anti‐candida and anti‐oxidant activities. The results of this investigation confirm the biological properties of Se.Inspec keywords: X‐ray diffraction, microorganisms, oxidation, transmission electron microscopy, reduction (chemical), nanomedicine, biomedical materials, visible spectra, nanoparticles, proteins, nanofabrication, selenium, ultraviolet spectra, particle size, Fourier transform infrared spectra, antibacterial activityOther keywords: proteins, oxidative stress, Se oxyanions, yeast, biosynthesised SeNPs, anti‐oxidant activities, human body, living organisms, Se nanoparticles, Nematospora coryli, anti‐candida activities, biosynthesis, ultraviolet–visible analysis, X‐ray diffraction, X‐ray fluorescence, transmission electron microscope, Fourier transform infrared spectroscopy, structural analysis, size 50.0 nm to 250.0 nm, Se  相似文献   

20.
Nanotechnology is one of the promising fields of research and generating new avenues and applications in medicine. Recently, marine floras such as, marine endophytes are gaining the attention of many researchers due to the myriad of bioactive molecules that they possess. In addition, they find applications in many pharmaceutical and cosmetic industries. In this study, they have studied the green synthesis of gold nanoparticles (AuNPs) from Penicillium citrinum (P. citrinum) and its antioxidant activity. P. citrinum was isolated from brown algae. The identity of the fungus was established by comparing its 18S rDNA sequence. AuNPs were synthesised using P. citrinum and were characterised by UV–visible spectrophotometer (UV–vis), field emission scanning electron microscope (FESEM), X‐ray diffraction, Fourier transform infrared spectroscopy and dynamic light scattering (DLS). AuNPs were tested for free radical scavenging activity by 1,1‐diphenyl‐2‐picrylhydrazyl method. The particle sizes of AuNps were determined by FESEM and DLS. The reduction of gold metal ion was confirmed from the UV–vis spectrum. AuNPs showed significant antioxidant potential and the activity was comparable to the standard ascorbic acid. Further, in vitro and in vivo studies on these AuNPs will help in developing an alternative, cost‐effective and acceptable drug for various ailments.Inspec keywords: microorganisms, nanoparticles, gold, nanofabrication, particle size, nanobiotechnology, DNA, molecular biophysics, molecular configurations, ultraviolet spectra, visible spectra, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, light scattering, free radical reactions, biochemistryOther keywords: biofabrication, gold nanoparticles, marine endophytic fungi, Penicillium citrinum, nanotechnology, medicine applications, marine floras, marine endophytes, bioactive molecules, pharmaceutical industries, cosmetic industries, antioxidant activity, brown algae, 18S rDNA sequence, UV‐visible spectrophotometer, field emission scanning electron microscope, FESEM, X‐ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering, free radical scavenging activity, 1,1‐diphenyl‐2‐picrylhydrazyl method, particle sizes, gold metal ion reduction, antioxidant potential, standard ascorbic acid, drug, ailments, Au  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号