首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

2.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

3.
This study investigated synthesis and characterisation of Nano‐PLGA (poly(lactic‐co‐glycolic acid))/CO (clove‐oil) nanoparticles. The delivery of drug‐loaded nanoparticles to demineralised dentin substrates and their morphological association with a two‐step etch‐and‐rinse adhesive system was studied. The effect of Nano‐PLGA/CO pretreatment on micro‐tensile bond strength of resin‐dentin bonding was scrutinised. This study employed CO‐containing PLGA nanoparticles as a delivery vehicle for sustainable drug release inside dentinal‐tubules for potential dental applications. Emulsion evaporation resulted in uniformly distributed negatively‐charged Nano‐PLGA/Blank and Nano‐PLGA/CO nanoparticles. Scanning electron microscopy/ transmission electron microscopy revealed even spherical nanoparticles with smooth texture. High CO‐loading and encapsulation were achieved. Moreover, controlled CO‐release was evidenced after 15 days, in‐vitro and ex‐vivo. Nanoparticles exhibited low initial toxicity towards human mesenchymal stem cells with excellent antibacterial properties. Nanoparticles penetration inside dentinal‐tubules indicated a close correlation with resin‐tags. Nano‐PLGA/CO pretreatment indicated reduction in short‐term bond strength of resin‐dentin specimens. Nano‐PLGA/CO as model drug‐loaded nanoparticles showed excellent metric and antibacterial properties, low toxicity and sustained CO release. However, the loading of nanoparticles with CO up to ∼10 mg (Nano‐PLGA/CO:10) did not adversely affect short‐term bond strength values. This drug‐delivery strategy could be further expanded to deliver other pulp‐sedative agents and medications with other dental relevance.Inspec keywords: nanoparticles, dentistry, encapsulation, filled polymers, nanofabrication, nanocomposites, nanomedicine, biomedical materials, drug delivery systems, adhesives, tensile strength, biomechanics, resins, proteins, molecular biophysics, biochemistry, emulsions, evaporation, scanning electron microscopy, transmission electron microscopy, texture, cellular biophysics, antibacterial activity, bonds (chemical)Other keywords: poly(lactic‐co‐glycolic acid) encapsulated clove oil nanoparticles, dental applications, drug‐loaded nanoparticle delivery, demineralised dentin substrates, morphological association, two‐step etch‐and‐rinse adhesive system, simulated pulpal pressure, nanoPLGA‐CO pretreatment, microtensile bond strength, resin‐dentin bonded specimens, CO‐containing PLGA nanoparticles, delivery vehicle, sustainable drug release, dentinal‐tubules, potential dental applications, emulsion evaporation, uniformly‐distributed negatively‐charged nanoPLGA‐blank, scanning electron microscopy‐transmission electron microscopy, spherical nanoparticles, smooth texture, high CO‐loading, controlled CO‐release, human mesenchymal stem cells, antibacterial properties, antibiofilm properties, deep nanoparticle penetration, resin‐tags, short‐term bond strength, resin‐dentin specimens, metric properties, antibacterial properties, sustained CO release, pulp‐sedative agents, time 15 d  相似文献   

4.
The objective of this study was to develop an in‐situ gel containing lorazepam (LZM) loaded nanostructured lipid carriers (NLCs) for direct nose‐to‐brain delivery in order to increase drug therapeutic efficacy in the treatment of epilepsy. Accordingly, LZM loaded NLCs were formulated using emulsification solvent diffusion and evaporation method; then the effects of the formulation variables on different physicochemical characteristics of NLCs were investigated. Thermosensitive in‐situ gels containing LZM‐NLCs were prepared using a combination of chitosan and β‐glycerol phosphate (β‐GP). The anticonvulsant efficacy of LZM‐NLCs‐Gel was then examined using the pentylenetetrazole (PTZ) model. The optimised NLCs were spherical, showing the particle size of 71.70 ± 5.16 nm and the zeta potential of −20.06 ± 2.70 mV. The pH and gelation time for the chitosan solution with 15% (w/v) β‐GP were determined to be 7.12 ± 0.03 and 5.33 ± 0.58 min, respectively. The in‐vivo findings showed that compared with the control group and the group that received LZM‐Gel, the occurrence of PTZ‐induced seizures in the rats was significantly reduced by LZM‐NLCs‐Gel after intranasal administration. These results, therefore, suggested that the LZM‐NLCs‐Gel system could have potential applications for brain targeting through nasal route and might increase LZM therapeutic efficacy in the treatment of epilepsy.Inspec keywords: biomedical materials, nanomedicine, cellular biophysics, electrokinetic effects, drug delivery systems, nanoparticles, brain, pH, drugs, particle size, nanofabrication, medical disorders, polymer gelsOther keywords: evaporation method, β‐glycerol phosphate, β‐GP, optimised NLCs, received LZM‐Gel, LZM therapeutic efficacy, chitosan‐based thermosensitive gel, lorazepam NLCs, nose‐to‐brain delivery, drug therapeutic efficacy, emulsification solvent diffusion, in‐vivo evaluation, in‐vitro evaluation, LZM‐NLC‐gel system, status epilepticus treatment, lorazepam loaded nanostructured lipid carriers, epilepsy treatment, physicochemical characteristics, thermosensitive in‐situ gel, anticonvulsant efficacy, pentylenetetrazole model, particle size, zeta potential, pH, gelation time, chitosan solution, PTZ‐induced seizures, intranasal administration  相似文献   

5.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

6.
To sustained release of an anticancer drug, oxaliplatin (OX), a non‐toxic and biocompatible nanocarrier based on bovine serum albumin (BSA) were synthesised by desolvation method and characterised using Fourier‐transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and dynamic light scattering. The results showed that the BSA nanoparticles (BSANPs) with a mean magnitude of 187.9 ± 1.2 nm have spherical morphology with a smooth surface and a uniform distribution. Furthermore, OX was loaded onto the BSANPs and the loading was confirmed by FTIR, AFM and FESEM techniques. The percentage of encapsulation efficiency and drug loading were determined by absorption spectroscopy (UV–vis). The drug release studies showed that release of OX from BSANPs exhibited slower release rate. However, the release kinetics followed the first‐order kinetic for both of them with the non‐Fickian release behaviour. The electrochemical analysis showed stability of OX loaded onto the BSANPs (OX@BSANPs) and confirmed the diffusion mechanism. Furthermore, the results of MTT assay revealed increasing of normal cell viability and cancer cell death in the OX@BSANPs compared to only OX. It was shown that the BSANPs could be safely used as a biocompatible nanocarrier for the sustained release of OX.Inspec keywords: nanoparticles, drug delivery systems, molecular biophysics, encapsulation, cancer, proteins, drugs, cellular biophysics, light scattering, nanofabrication, atomic force microscopy, biomedical materials, diffusion, toxicology, nanomedicine, field emission scanning electron microscopy, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, surface morphologyOther keywords: cytotoxicity, biocompatible nanocarrier, bovine serum albumin nanoparticles, desolvation method, atomic force microscopy, dynamic light scattering, BSA nanoparticles, FESEM, UV‐visible absorption spectroscopy, drug release rate, nonFickian release behaviour, oxaliplatin anticancer drug, Fourier‐transform infrared spectroscopy, FTIR spectroscopy, spherical morphology, encapsulation efficiency, release kinetics, first‐order kinetics, electrochemical analysis, diffusion mechanism, MTT assay, cell viability, cancer cell death  相似文献   

7.
Quercetin is an abundant flavonoid in fruits, vegetables such as onion, tea leaves, cranberry, radish leaves etc. with numerous biological activities and widely used as an effective antioxidant. Its low solubility in water and chemical decomposition in intestinal environment are predicaments in delivery through dietary or oral intake. Noble polymeric nanoparticles are of particular interest today because of their applications in many areas. Polymer nanoparticles have attracted the interest of many research groups and have been utilised in an increasing number of fields such as site targeted drug delivery in cancer research during the last decades. Various techniques can be used to produce polymer nanoparticles, such as solvent evaporation, salting‐out, dialysis, supercritical fluid technology etc. The choice of method depends on a number of factors, such as, particle size, particle size distribution, area of application, etc. In the present study, single emulsion‐solvent evaporation technique has been utilised with two different organic solvents: acetone and chloroform/methanol to prepare quercetin loaded poly(D,L‐lactide‐co‐glycolide) nanoparticles. According to the authors’ observations acetone is a better solvent for encapsulating quercetin in polymer nanoparticles owing to its physical and chemical properties.Inspec keywords: solvent effects, nanofabrication, nanomedicine, nanoparticles, hydrophobicity, cancer, drug delivery systems, emulsions, evaporationOther keywords: particle size, single emulsion‐solvent evaporation technique, acetone, chloroform/methanol, cancer research, drug delivery, antioxidant, flavonoid, quercetin, hydrophobic drug‐loaded polymer nanoparticles, nanoparticle synthesis, solvent effect  相似文献   

8.
Over the past few years, taxanes have emerged as a new class of anticancer drugs. Docetaxel (DTX) the prototype of this class has been approved for the treatment of broad range of cancers. However, to date the commercial preparation of DTX (Taxotere®) is accompanying adverse side effects, intolerance, and poor solubility, which can be overcome by encapsulating them using solid lipid nanoparticles (SLNs). SLNs represent versatile delivery system of drugs with newer forms such as polymer–solid lipid hybrid, surface modified and long circulating nanoparticles bringing forth improved prospects for cancer chemotherapy. In this review, the authors have discussed the current uses of various SLNs formulations of DTX with key emphasis on controlled and site‐specific drug delivery along with enhanced antitumour activity elucidated via in vitro and in vivo studies. Furthermore, the review article highlights few approaches that can be used in combination with existing DTX‐loaded SLNs to supplement DTX drug delivery.Inspec keywords: nanoparticles, nanomedicine, drug delivery systems, biomedical materials, cancer, reviews, tumoursOther keywords: docetaxel‐loaded solid lipid nanoparticles, drug delivery system, taxanes, anticancer drugs, Taxotere, SLN encapsulation, polymer‐solid lipid hybrid, surface modified nanoparticles, long circulating nanoparticles, chemotherapy, review  相似文献   

9.
The objective of this study is to develop resveratrol (RES) loaded polyethylene glycols (PEGs) modified chitosan (CS) nanoparticles (NPs) by ionic gelation method for the treatment of glaucoma. While increasing the concentration of PEG, the particle size and polydispersity index of the formulations increased. Entrapment efficiency and RES loading (RL) of NPs decreased while increasing PEG concentration. The in vitro release of NPs showed an initial burst release of RES (45%) followed by controlled release. Osmolality of formulations revealed that the prepared NPs were iso‐osmolar with the tear. Ocular tolerance of the NPs was evaluated using hen''s egg test on the chorioallantoic membrane and it showed that the NPs were non‐irritant. RES‐loaded PEG‐modified CS NPs shows an improved corneal permeation compared with RES dispersion. Fluorescein isothiocyanate loaded CS NPs accumulated on the surface of the cornea but the PEG‐modified CS NPs crossed the cornea and reached retinal choroid. RES‐loaded PEG‐modified CS NPs reduced the intra‐ocular pressure (IOP) by 4.3 ± 0.5 mmHg up to 8 h in normotensive rabbits. These results indicate that the developed NPs have efficient delivery of RES to the ocular tissues and reduce the IOP for the treatment of glaucoma.Inspec keywords: conducting polymers, nanoparticles, nanomedicine, drug delivery systems, particle size, nanofabrication, organic compounds, biomembranes, cellular biophysics, eye, vision defects, biological tissuesOther keywords: RES‐loaded pegylated CS NP, efficient ocular delivery, resveratrol loaded polyethylene glycol modified chitosan nanoparticles, ionic gelation method, glaucoma treatment, particle size, polydispersity index, entrapment efficiency, RES loading, PEG concentration, in vitro release, osmolality formulations, ocular tolerance, hen egg testing, chorioallantoic membrane, improved corneal permeation, RES dispersion, fluorescein isothiocyanate loaded CS NP, cornea surface, reached retinal choroid, intraocular pressure, normotensive rabbits, RES delivery, ocular tissues  相似文献   

10.
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti‐cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti‐cancer activity is elucidated with MCF‐7 cell death. Structural characteristics of Mobil Composition of Matter ‐ 41(MCM‐41) as determined by high‐resolution transmission electron microscopy (HR‐TEM) shows that MCM‐41 size ranges from 100 to 200 nm diameters with pore size 2–10 nm for drug adsorption. The authors found 80–90% of curcumin is loaded on MCM‐41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin‐loaded MCM‐41 induced 50% mortality of MCF‐7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM‐41 effectively decreased cell survival of MCF‐7 cells in vitro.Inspec keywords: cancer, cellular biophysics, nanoparticles, nanomedicine, biomedical materials, polymers, mesoporous materials, transmission electron microscopy, drugs, adsorptionOther keywords: polyethylenimine‐modified curcumin‐loaded mesoporus silica nanoparticle, MCF‐7 cell line, breast cancer, cancer cells, drug resistance, multipotent activity, therapeutic potential, anticancer drug, mesoporous silica nanoparticle, MCF‐7 cell death, high‐resolution transmission electron microscopy, drug adsorption, curcumin‐loaded MCM‐41, nutraceutical curcumin, size 2 nm to 10 nm, size 100 nm to 200 nm  相似文献   

11.
In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.Inspec keywords: encapsulation, cancer, scanning electron microscopy, nanoparticles, surfactants, drugs, nanofabrication, antibacterial activity, biomedical materials, drug delivery systems, polymers, nanomedicine, Fourier transform infrared spectra, precipitation (physical chemistry), atomic force microscopy, particle sizeOther keywords: surfactant‐mediated synthesis, polyhydroxybutyrate nanoparticles, sustained drug delivery, surfactant concentrations, PHB nanoparticles, sustained curcumin delivery, drug encapsulation efficiency, anticancer activity, in vitro drug release, nanoprecipitation method, Tween 80, FTIR spectra, SEM, AFM, particle sizes, antibacterial activity, AO‐PI staining, mitochondrial depolarisation assay  相似文献   

12.
The present study aimed to develop a surface‐modified biocompatible nanostructured lipid carrier (NLCs) system using polyoxyethylene (40) stearate (POE‐40‐S) to improve the oral bioavailability of poorly water‐soluble Biopharmaceutics Classification System class‐II drug like tamoxifen (TMX). Also aimed to screen the most influential factors affecting the particle size (PS) using Taguchi (L12 (211)) orthogonal array design (TgL12 OA). Then, to optimize the TMX loaded POE‐40‐S (P) surface‐modified NLCs (TMX‐loaded‐PEG‐40‐S coated NLC (PNLCs) or PNLCs) by central composite design (CCD) using a four‐factor, five‐level model. The most influential factors affecting the PS was screened and optimized. The in‐vitro study showed that increased drug‐loading (DL) and encapsulation efficiency (EE), decreased PS and charge, sustained drug release for the prolonged period of the time with good stability and suppressed protein adsorption. The Ex‐vivo study showed that decreased mucous binding with five‐fold enhanced permeability of PNLC formulation after surface modification with POE‐40‐S. The in‐vitro cytotoxicity study showed that the blank carrier is biocompatible and cytotoxicity of the formulation was dependent on the concentration of the drug. Finally, it can be concluded that the surface‐modified PNLCs formulation was an effective, biocompatible, stable formulation in the enhancement of dissolution rate, solubility, stability with reduced mucus adhesion and increased permeability thereby which indicates its enhanced oral bioavailability.Inspec keywords: nanoparticles, cellular biophysics, solubility, drug delivery systems, toxicology, adsorption, adhesion, dissolving, biomedical materials, encapsulation, polymers, proteins, nanomedicine, permeability, particle size, electrokinetic effectsOther keywords: water‐soluble BCS class‐II, TgL12 OA, TMX‐loaded POE‐40‐S surface‐modified NLC, surface‐modified PNLC formulation, lipid‐based NLC system, oral bioavailability, stable formulation, biocompatible formulation, blank carrier, in vitro cytotoxicity, surface modification, PNLC formulation, drug release, central composite design, orthogonal array design, encapsulation efficiency, steric stabilisation effect, particle size, dissolution rate, polyoxyethylene stearate, surface‐modified biocompatible carrier system, systemic toxicity, water‐soluble drug, tamoxifen‐loaded surface‐modified nanostructured lipid carrier  相似文献   

13.
Metal‐organic frameworks (MOFs) as drug carriers have many advantages than traditional drug carriers and have received extensive attention from researchers. However, how to regulate the microstructure of MOFs to improve the efficiency of drug delivery and sustained release behaviour is still a big problem for the clinical application. Herein, the authors synthesise surfactant‐modified ZIF‐8 nanoparticles with different microstructures by using different types of surfactants to modify ZIF‐8. The surfactant‐modified ZIF‐8 nanoparticles have the larger specific surface area and total micropore volumes than the original ZIF‐8, which enables doxorubicin (DOX) to be more effectively loaded on the drug carriers and achieve controlled drug sustained release. Excellent degradation performance of ZIF‐8 nanoparticles facilitates the metabolism of drug carriers. The formulation was evaluated for cytotoxicity, cellular uptake and intracellular location in the A549 human non‐small‐cell lung cancer cell line. ZIF‐8/DOX nano drugs exhibit higher cytotoxicity towards cells in comparison with free DOX, suggesting the potential application in nano drugs to cancer chemotherapy.Inspec keywords: nanomedicine, lung, nanofabrication, drug delivery systems, cellular biophysics, nanoparticles, cancer, toxicology, biomedical materials, drugs, organometallic compounds, surfactants, porosity, biodegradable materialsOther keywords: controlled drug sustained release, nanodrugs, controllable microstructures, drug loading, metal‐organic frameworks, traditional drug carriers, drug delivery, surfactant‐modified ZIF‐8 nanoparticles, specific surface area, micropore volumes, doxorubicin, degradation performance, metabolism, cytotoxicity, cellular uptake, intracellular location, A549 human nonsmall‐cell lung cancer cell line, cancer chemotherapy  相似文献   

14.
Drug delivery is one of the most important challenges in the domain of health. Non‐toxic and biocompatible carriers are provided by human serum albumin nano‐capsule (HSA/NC) for drug delivery applications. In this study, HSA, with high loadings of drug‐modified cobalt ferrite (CoFe2 O4) magnetic nanoparticle (CoFe2 O4 /MNPs) was fabricated for epirubicin anticancer drug delivery. In the initial step, CoFe2 O4 /MNPs was synthesised via co‐precipitation technique and characterised by X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy and map analysis. Furthermore, CoFe2 O4 /MNPs and epirubicin were loaded into HSA/NC and utilised as a novel system against breast cancer cell line (MCF‐7). IC50 for free epirubicin, unloaded CoFe2 O4 /MNPs/HSA/NC, CoFe2 O4 /MNPs and epirubicin‐loaded CoFe2 O4 /MNPs/HSA/NC were 7.7, 2400, 840 and 430 μg/ml, respectively. The results obtained revealed high cytotoxicity effect of epirubicin‐loaded CoFe2 O4 /MNPs on breast cancer cell line.Inspec keywords: drug delivery systems, biomedical materials, nanoparticles, cobalt compounds, ferrites, nanomedicine, proteins, molecular biophysics, drugs, magnetic particles, nanomagnetics, nanofabrication, precipitation (physical chemistry), X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, cancer, cellular biophysics, toxicology, magnetic hysteresisOther keywords: HSA, high‐efficiency carrier, epirubicin anticancer drug delivery, human serum albumin nanocapsule, drug‐modified cobalt ferrite magnetic nanoparticle, coprecipitation technique, X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy, map analysis, breast cancer cell line, cytotoxicity effect, CoFe2 O4   相似文献   

15.
Lycopene (LYC) is known to protect cells from oxidative damage caused by free radicals in human tissues. In the present study, the authors designed a LYC‐loaded sialic acid (SA)‐conjugated poly(D,L‐lactide‐co‐glycolide) (PLGA) nanoparticle (LYC‐NP) to enhance the therapeutic efficacy of LYC in acute kidney injury. The characteristics of the LYC‐NPs were defined according to particle size, morphology, and in vitro drug release. The LYC‐NPs exhibited a controlled release of LYC over 48 h. Confocal laser scanning microscopy clearly highlighted the targeting potential of SA. Enhanced green fluorescence was observed for the LYC‐NPs in H2 O2 ‐treated human umbilical vein endothelial cells, indicating enhanced internalisation of NPs. The LYC‐NPs showed significantly greater cell viability than H2 O2 ‐treated cells. In addition, the LYC‐NPs remarkably reduced proinflammatory cytokine levels, attributable mainly to the increased cellular internalisation of the SA‐based carrier delivery system. Furthermore, protein levels of caspase‐3 and ‐9 were significantly down‐regulated after treatment with the LYC‐NPs. Overall, they have demonstrated that SA‐conjugated PLGA‐NPs containing LYC could be used to treat kidney injury.Inspec keywords: fluorescence, biomedical materials, biological tissues, cellular biophysics, drugs, proteins, molecular biophysics, injuries, drug delivery systems, kidney, nanomedicine, biochemistry, optical microscopy, nanoparticles, nanofabrication, cancer, toxicology, blood vessels, particle sizeOther keywords: sialic acid‐conjugated PLGA nanoparticles, chemotherapeutic drug‐induced kidney injury, LYC‐NP, LYC‐loaded sialic acid‐conjugated poly(D,L‐lactide‐co‐glycolide) nanoparticle, SA‐conjugated PLGA‐NP, protective effect, lycopene, human tissues, particle size, in vitro drug release, confocal laser scanning microscopy, green fluorescence, human umbilical vein endothelial cells, cell viability, proinflammatory cytokine levels, cellular internalisation, SA‐based carrier delivery system, time 48.0 hour  相似文献   

16.
Human epidermal growth factor receptor 2 (HER‐2) is overexpressed in 20–30% of human breast cancers, associated with poor prognosis and tumour aggression. The aim of this study was the production of trastuzumab‐targeted Ecoflex nanoparticles (NPs) loaded with docetaxel and in vitro evaluation of their cytotoxicity and cellular uptake. The NPs were manufactured by electrospraying and characterised regarding size, zeta potential, drug loading, and release behaviour. Then their cytotoxicity was evaluated by MTT assay against an HER‐2‐positive cell line, BT‐474, and an HER‐2‐negative cell line, MDA‐MB‐468. The cellular uptake was studied by flow cytometry and fluorescent microscope. The particle size of NPs was in an appropriate range, with relatively high drug entrapment and acceptable release efficiency. The results showed no cytotoxicity for the polymer, but the significant increment of cytotoxicity was observed by treatment with docetaxel‐loaded NPs in both HER‐2‐positive and HER‐2‐negative cell lines, in comparison with the free drug. The trastuzumab‐targeted NPs also significantly enhanced cytotoxicity against BT‐474 cells, compared with non‐targeted NPs.Inspec keywords: cancer, proteins, biomedical materials, nanofabrication, drug delivery systems, cellular biophysics, biological organs, nanomedicine, toxicology, tumours, nanoparticles, biomedical optical imaging, fluorescence, particle sizeOther keywords: human breast cancers, tumour aggression, trastuzumab‐targeted Ecoflex nanoparticles, cellular uptake, zeta potential drug loading, HER‐2‐positive cell line, HER‐2‐negative cell line, MDA‐MB‐468, particle size, trastuzumab‐conjugated nanoparticles, electrospraying technique, human epidermal growth factor receptor, cytotoxicity, nontargeted nanoparticles, butylene adipate‐co‐butylene terephthalate, trastuzumab‐targeted NP, docetaxel‐loaded NP  相似文献   

17.
Poly(glycerol sebacate) (PGS) is a new biodegradable polymer with good biocompatibility used in many fields of biomedicine and drug delivery. Sunitinib‐loaded PGS/gelatine nanoparticles were prepared by the de‐solvation method for retinal delivery and treatment of diabetic retinopathy. The nanoparticles were characterised by Fourier‐transform infrared and differential scanning calorimetry. The effects of different formulation variables including drug‐to‐carrier ratio, gelatine‐to‐PGS ratio, and glycerine‐to‐sebacate ratio were assessed on the encapsulation efficiency (EE%), particle size, release efficiency (RE), and zeta potential of the nanoparticles. The in vitro cytotoxicity of PGS/gelatine nanoparticles was studied on L929 cells. Draize test on rabbit eyes was also done to investigate the possible allergic reactions caused by the polymer. Glycerine/sebacic acid was the most effective parameter on the EE and RE. Gelatine‐to‐PGS ratio had the most considerable effect on the particle size while the RE was more affected by the glycerine/sebacic acid ratio. The optimised formulation (S1 G0.7 D21.2) exhibited a particle size of 282 nm, 34.6% EE, zeta potential of −8.9 mV, and RE% of about 27.3% for drug over 228 h. The 3‐(4,5‐dimethylthuazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay indicated PGS/gelatine nanoparticles were not cytotoxic and sunitinib‐loaded nanoparticles were not toxic at concentrations <36 nM.Inspec keywords: polymers, differential scanning calorimetry, toxicology, drug delivery systems, solvation, eye, encapsulation, particle size, drugs, biodegradable materials, nanofabrication, nanomedicine, nanoparticles, gelatin, Fourier transform infrared spectraOther keywords: gelatine‐to‐PGS ratio, glycerine‐to‐sebacate ratio, particle size, zeta potential, sunitinib‐loaded nanoparticles, biodegradable polymer, retinal delivery, differential scanning calorimetry, drug‐to‐carrier ratio, allergic reactions, physicochemistry, cytotoxicity, poly(glycerol sebacate) nanoparticles, sunitinib ocular delivery, drug delivery, sunitinib‐loaded PGS‐gelatine nanoparticles, Fourier‐transform, in vitro cytotoxicity, biocompatibility, Draize test, rabbit eyes, 3‐(4,5‐dimethylthuazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay  相似文献   

18.
The authors synthesised porous GdF3 :Er3+, Yb3+ –COOH core–shell structured bi‐functional nanoparticles through a one‐step hydrothermal route during which ethylene diamine tetraacetic acid) was bound to the surface of the nanoparticles. It has high up‐conversion emission intensity for monitoring the drug release process and magnetisation saturation value (10.2 emu/g) for drug targeting under foreign magnetic fields. Moreover, porous GdF3 :Er3+, Yb3+ as drug carriers with a high drug‐loading efficiency. cis‐Dichlorodiammineplatinum(II) (cisplatin, CDDP)‐loaded GdF3 :Er3+, Yb3+ nanoparticles (GdF3 :Er3+, Yb3+ –CDDP) were characterised by the Fourier transform infrared spectra, and CDDP was loaded in the form of electrostatic interaction and hydrogen bonds. Compared with CDDP alone, GdF3 :Er3+, Yb3+ –CDDP nanoparticles increase concentration of CDDP in the target site and enhance its anticancer efficiency. Therefore, the as‐prepared GdF3 :Er3+, Yb3+ –COOH nanoparticles allow simultaneous targeted drug delivery and monitoring as promising anti‐cancer theranostic agents.Inspec keywords: gadolinium compounds, erbium, ytterbium, organic compounds, nanoporous materials, core‐shell nanostructures, drug delivery systems, Fourier transform infrared spectra, electrostatics, hydrogen bonds, magnetisation, nanofabrication, nanomedicine, spectrochemical analysisOther keywords: porous core–shell structured bifunctional nanoparticles, drug delivery, one‐step hydrothermal route, ethylene diamine tetraacetic acid, magnetisation saturation value, up‐conversion emission intensity, cis‐Dichlorodiammineplatinum(II), Fourier transform infrared spectra, electrostatic interaction, hydrogen bonds, anticancer theranostic agents  相似文献   

19.
Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half‐life is low (4–6 min) and its administration needs a prolonged continuous infusion. Improving tPA half‐life could reduce enzyme dosage and enhance patient compliance. Nano‐carries could be used as delivery systems for the protection of enzymes physically, enhancing half‐life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS‐g‐PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles’ size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half‐life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half‐life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p ‐value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS‐g‐PEG/tPA could increase enzyme half‐life during the time and could be used as a non‐toxic candidate delivery system for tPA.Inspec keywords: drug delivery systems, nanofabrication, drugs, nanomedicine, coagulation, biomedical materials, cellular biophysics, enzymes, biochemistry, toxicology, molecular biophysics, biological tissues, blood, nanoparticles, polymersOther keywords: chitosan‐g‐PEG grafted nanoparticles, half‐life enhancer carrier, tissue plasminogen activator delivery, tPA half‐life, prolonged continuous infusion, enzyme dosage, polyethylene glycol, cytotoxicity, enzyme activity, encapsulated tPA, enzyme half‐life, blood coagulation, time 5.0 min  相似文献   

20.
This study aimed to prepare, optimise, and characterise the novel hybrid hydrogel scaffold containing atorvastatin lipid nanocapsules (LNCs) and gold nanoparticles (NPs) to improve cardiomyoblasts proliferation and regeneration of myocardium. A thermo‐responsive aminated guaran (AGG) hydrogel was prepared to encompass extracellular matrix (ECM) fetched from human adipose tissue. Emulsion phase‐inversion technique was used to obtain LNCs. Biocompatibility, tensile strength, conductivity, and proliferation of human myocardial cells of the optimised formulation were studied. The LNCs have a spherical shape, and the optimised formulation showed a mean particle size of 18.79 nm, the zeta potential of − 11.4 mV, drug loading of 99.99%, and release efficiency percent over 72 h was 18.73%. The injectable thermo‐sensitive hydrogel prepared using 1 w/v% of AGG, 35 w/w% of ECM, ∼0.5 mg/ml of gold NPs and atorvastatin loaded LNCs showed the best physical characteristics. The hybrid scaffold loaded with atorvastatin and gold NPs improved the proliferation of cardiomyoblasts more than sevenfold with enhanced cell attachment to the scaffold. The tensile strength and the conductivity of the scaffold were 300 kPa and 0.14 S/m, respectively. Injectable hybrid adipose tissue prepared by ECM and AGG hydrogel loaded with atorvastatin and gold NPs showed promising physical characteristics for myocardial tissue engineering.Inspec keywords: biological tissues, nanoparticles, tensile strength, electrokinetic effects, particle size, nanomedicine, emulsions, biomedical materials, cellular biophysics, nanofabrication, drugs, drug delivery systems, molecular biophysics, tissue engineering, hydrogels, goldOther keywords: Au, cardiomyoblast, hybrid hydrogel scaffold, myocardial tissue engineering, AGG hydrogel, injectable hybrid adipose tissue, atorvastatin loaded LNCs, gold NPs, thermo‐sensitive hydrogel, drug loading, human myocardial cells, tensile strength, emulsion phase‐inversion technique, human adipose tissue, ECM, thermo‐responsive aminated guaran hydrogel, cardiomyoblasts proliferation, atorvastatin lipid nanocapsules, myocardial tissue regeneration, adipose tissue extracellular matrix, thermo‐gelling hydrogel scaffold, gold nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号