首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to green synthesised silver nanoparticles (AgNPs) using Centella asiatica leaf extract and investigate the cytotoxic and apoptosis‐inducing effects of these nanoparticles in MCF‐7 breast cancer cell line. The characteristics and morphology of the green synthesised AgNPs were evaluated using transmission electron microscopy, scanning electron microscopy, UV–visible spectroscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The MTT assay was used to investigate the anti‐proliferative activity of biosynthesised nanoparticles in MCF‐7 cells. Apoptosis test was performed using flow cytometry and expression of caspase 3 and 9 genes. The spherical AgNPs with an average size of 19.17 nm were synthesised. The results showed that biosynthesised AgNPs exhibited cytotoxicity, anti‐cancer, apoptosis induction, and increased expression of genes encoding for caspases 3 and 9 in MCF‐7 cancer cells in a concentration‐ and time‐dependent manner. It seems that green synthesised AgNPs have potential uses for pharmaceutical industries.Inspec keywords: ultraviolet spectra, transmission electron microscopy, cellular biophysics, infrared spectra, visible spectra, nanofabrication, cancer, toxicology, nanomedicine, nanoparticles, biomedical materials, scanning electron microscopy, silver, Fourier transform spectra, X‐ray diffraction, genetics, enzymes, botany, biochemistryOther keywords: spherical AgNPs, biosynthesised AgNPs, anti‐cancer, apoptosis induction, green synthesised AgNPs, MCF‐7 breast cancer cell line, green synthesised silver nanoparticles, Ag, caspase gene expression, flow cytometry, anti‐proliferative activity, MTT assay, pharmaceutical industries, cytotoxicity, UV–visible spectroscopy, nanoparticle morphology, scanning electron microscopy, Centella asiatica leaf extract, biosynthesised nanoparticles, Fourier‐transform infrared spectroscopy, transmission electron microscopy  相似文献   

2.
This study reports an eco‐friendly‐based method for the preparation of biopolymer Ag–Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK‐(Ag–Au) NPs was confirmed by UV‐absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK‐(Ag–Au) NPs were of 1–12 nm in size. The anti‐proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real‐time polymerase chain reaction (PCR) techniques. Expression studies revealed up‐regulation of p53, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors (PPAR) PPARa and PPARb, genes and down‐regulation of Bcl‐2 and Bcl‐x(K) genes, in B16F10 cells treated with GK‐(Ag–Au) NPs confirming the anti‐proliferative properties of the nanoparticles.Inspec keywords: nanomedicine, transmission electron microscopy, genetics, cellular biophysics, molecular biophysics, enzymes, nanofabrication, gold, silver, scanning electron microscopy, nanoparticles, Fourier transform infrared spectra, atomic force microscopy, biomedical materialsOther keywords: size 1.0 nm to 12.0 nm, Ag‐Au, anti‐proliferative assessment, eco‐friendly‐based method, anti‐proliferative activity, anti‐proliferative properties, biopolymer‐based Ag–Au bimetallic nanoparticle, Cochlospermum gossypium, gum kondagogu, biopolymer preparation, biogenic synthesis, UV‐absorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, MTT assay, confocal microscopy, flow cytometry, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors, Bcl‐2 gene, Bcl‐x(K) gene, B16F10 cells  相似文献   

3.
Biosynthesis of nanoparticles (NPs) using biomass is now one of the best methods for synthesising NPs due to their nontoxic and biocompatibility. Plants are the best choice among all biomass to synthesise large‐scale NPs. The objectives of this study were to synthesise zinc oxide nanoparticles (ZnO‐NPs) using Anjbar (root of Persicaria bistorta) [An/ZnO‐NPs] and investigate the cytotoxic and anti‐oxidant effects. For this purpose, the An/ZnO‐NPs were synthesised by using Bistort extract and characterised using UV–Visible spectroscopy, transmission electron microscope, field emission scanning electron microscope, x‐ray diffraction and Fourier‐transform infrared spectroscopy. The cytotoxic effects of the An/ZnO‐NPs on MCF‐7 cells were followed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays at 24, 48, and 72 h. Nuclear morphology changed and apoptosis in cells was investigated using acridine orange/propodium iodide (AO/PI) staining and flow cytometry analysis. The pure biosynthesised ZnO‐NPs were spherical in shape and particles sizes ranged from 1 to 50 nm. Treated MCF‐7 cells with different concentrations of ZnO‐NPs inhibited cell viability in a time‐ and dose‐dependent manner with IC50 about 32 μg/ml after 48 h of incubation. In flow cytometry analysis the sub‐G1 population, which indicated apoptotic cells, increased from 12.6% at 0 μg/ml (control) to 92.8% at 60 μg/ml, 48 h after exposure. AO/PI staining showed that the treated cells displayed morphologic evidence of apoptosis, compared to untreated groups. Inspec keywords: cancer, cellular biophysics, toxicology, particle size, nanofabrication, X‐ray diffraction, nanomedicine, nanoparticles, ultraviolet spectra, scanning electron microscopy, visible spectra, transmission electron microscopy, patient treatment, field emission electron microscopy, Fourier transform infrared spectra, drug delivery systemsOther keywords: anjbar, cytotoxic effects, human breast cancer cell line, biomass, transmission electron microscope, field emission scanning electron microscope, Fourier‐transform infrared spectroscopy, flow cytometry analysis, ZnO‐NPs inhibited cell viability, antioxidant effects, MCF‐7 cells, biosynthesised ZnO‐NP, biosynthesised ZnO‐NP, acridine orange‐propodium iodide staining, An‐ZnO‐NP, Persicaria bistorta, zinc oxide nanoparticle biosynthesis, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide  相似文献   

4.
Cancer is one of the leading causes of human death. Nanotechnology could offer new and optimised anticancer agents in order to fight cancer. It was shown that metal nanoparticles, in particular silver nanoparticles (AgNPs) were effective in cancer therapy. In this study, AgNPs were synthesised using Rubia tinctorum L. extract (Ru‐AgNPs). Then, cytotoxicity effects of the Ru‐AgNPs against MDA‐MB‐231 carcinoma cell line and human dermal fibroblast as normal cell line were performed. Furthermore, anti‐apoptotic effects of Ru‐AgNPs on these cancer and normal cell lines were compared using acridine orange/propidium iodide staining, flow cytometry analysis and real‐time qPCR in apoptosis gene markers. Results of UV‐vis spectroscopy showed that Ru‐AgNPs have a peak at 430 nm, which indicated synthesis of AgNPs. Ru‐AgNPs had spherical shape and average size of 12 nm. Ru‐AgNPs have cytotoxicity on MDA‐MB‐231 cells and decrease cancerous cell viability (IC50 = 4 µg/ml/48 h). Ru‐AgNPs could induce apoptosis in MDA‐MB‐231 cells through upregulation of Bax and downregulation of Bcl‐2 gene expression. The results opened up new avenues to develop Rubia based metal complexes as an anticancer agent.Inspec keywords: cellular biophysics, genetics, cancer, toxicology, nanoparticles, nanofabrication, nanomedicine, silver, biomedical materials, ultraviolet spectra, visible spectraOther keywords: Ru‐AgNPs, MDA‐MB‐231 carcinoma cell line, normal cell line, cancerous cell viability, in vitro anticancer properties, green synthesis, silver nanoparticles, Rubia tinctorum L. extract, cytotoxicity effects, human dermal fibroblast HFF, antiapoptotic effects, acridine orange‐propidium iodide staining, flow cytometry analysis, real‐time qPCR, apoptosis gene markers, UV‐visible spectroscopy, spherical shape, Bcl‐2 gene expression, Ag  相似文献   

5.
Silver nanoparticles (AgNPs) have been undeniable for its antimicrobial activity while its antitumour potential is still limited. Therefore, the present study focused on determining cytotoxic effects of AgNPs on Michigan cancer foundation‐7 (MCF‐7) breast cancer cells and its corresponding mechanism of cell death. Herein, the authors developed a bio‐reduction method for AgNPs synthesis using actinomycetes isolated from marine soil sample. The isolated strain was identified by 16s ribotyping method and it was found to be Streptomyces atrovirens. Furthermore, the synthesised AgNPs were characterised by various bio‐analytical techniques such as ultraviolet–visible spectrophotometer, atomic force microscopy, transmission electron microscopy, Fourier transform infra‐red spectroscopy, and X‐ray diffraction. Moreover, the results of 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay reveals 44.51 µg of AgNPs to have profound inhibition of cancer cell growth; furthermore, the inhibition of MCF‐7 breast cancer cell line was found to be dose dependent on treatment with AgNPs. Acridine orange and ethidium bromide double staining methods were performed for cell morphological analysis. The present results showed that biosynthesised AgNPs might be emerging alternative biomaterials for human breast cancer therapy.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, tumours, cancer, toxicology, nanofabrication, microorganisms, reduction (chemical), ultraviolet spectra, visible spectra, atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, biomimeticsOther keywords: acridine orange, ethidium bromide double staining methods, cell morphological analysis, alternative biomaterials, human breast cancer therapy, time 16 s, Ag, dose dependence, MCF‐7 breast cancer cell line inhibition, cancer cell growth inhibition, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, ultraviolet‐visible spectrophotometer, bioanalytical techniques, ribotyping method, isolated strain, marine soil sample, bioreduction method, cell death, Michigan cancer foundation‐7 breast cancer cells, cytotoxic effects, antitumour potential, antimicrobial activity, human breast cancer cells, potential anticancer activity, Streptomyces atrovirens, silver nanoparticles, biomimetic synthesis  相似文献   

6.
Owing to the numerous biological applications, cost effectiveness and low cytotoxicity of the biomimetic nanoparticles (NPs), the authors optimised the production of silver NPs (AgNPs) using aqueous extract of Teucrium stocksianum Boiss. The NPs were characterised by ultraviolet‐visible (UV‐vis) spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and Fourier transform‐infrared spectroscopy (FTIR). The UV‐vis spectroscopy revealed a surface plasmon resonance (410‐440 nm) at an incubation temperature of 90°C when 1 mM Ag nitrate combined to 5 mg/ml extract concentration in the ratio of 1:10. DLS results show an average zeta size of ∼44.61 nm and zeta potential of −15.3 mV. SEM and XRD confirmed the high crystallinity and cubical symmetry with an average size below 100 nm. FTIR measurement shows the presence of various functional groups, responsible for the capping and reduction of Ag metal. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide cell viability assay shows that AgNPs are less cytotoxic to J774 and L929 cells as compared with enhanced anticancer activity with low IC50 concentrations (68.24 µg/ml) against Michigan Cancer Foundation‐7 (MCF‐7) cells. The ethidium bromide/acridine orange assay shows that the AgNPs kill the cell by apoptosis. Overall, the results show that AgNPs possesses potent anticancer activities.Inspec keywords: cellular biophysics, cancer, nanobiotechnology, nanomedicine, ultraviolet spectra, X‐ray diffraction, scanning electron microscopes, light scattering, patient treatmentOther keywords: anticancer assessment, in vitro cytotoxic assessment, aqueous extract‐mediated AgNPs, Teucrium stocksianum Boiss, nanoparticles, biological applications, biosynthesis, silver NPs, X‐ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform‐infrared spectroscopy, UV‐vis spectroscopy, surface plasmon resonance, extract concentration, zeta potential, high crystallinity, FTIR measurement, amide molecules, viability assay, enhanced anticancer activity, potent anticancer activities  相似文献   

7.
One of the most important challenges in treating cancer is the invasion and the angiogenesis of cancer cells. The synthesis of green nanoparticles (NPs) and their use in therapeutic fields is one of the most effective methods with minimal side effects in cancer treatment. In this study, cytotoxic and anti‐angiogenic effects of silver NPs (AgNPs) coated with palm pollen extract [Ag–PP(NPs)] were evaluated. For this purpose, the cells were treated with NPs and then were subjected to trypan blue testing (48 h). Then, the cancer invasion was evaluated by the scratch procedure and the expressions of the vascular endothelial growth factor (VEGF) and its receptor (VEGF‐R) genes were estimated using real‐time PCR assay. Also, the angiogenesis effect of the NPs was investigated with chick chorioallantoic membrane (CAM) assay. The Ag–PP(NPs) induced cytotoxicity on MCF7 cells. The findings also showed that Ag–PP(NPs) inhibit invasive cancer cells and reduce the expression of VEGF and VEGF‐R and significantly reduced the number and vessels lengths and the lengths and weights of the embryos in CAM assay. Ag–PP(NPs) with the induction of cytotoxic effects, metastatic inhibition and anti‐angiogenesis properties should be considered as an appropriate option for treatment of cancerInspec keywords: nanomedicine, genetics, cellular biophysics, toxicology, patient treatment, silver, cancer, biochemistry, biomedical materials, nanoparticles, nanofabrication, membranesOther keywords: minimal side effects, cancer treatment, silver NPs, cancer invasion, vascular endothelial growth factor, receptor genes, VEGF‐R, real‐time polymerase chain reaction assay, angiogenesis effect, chick chorioallantoic membrane assay, MCF7 cells, invasive cancer cells, cytotoxic effects, putative mechanism, anticancer properties, antiangiogenic effects, antiangiogenesis properties, Ag–PP‐induced cytotoxicity, metastatic inhibition, palm pollen extraction, trypan blue testing, time 48.0 hour, Ag  相似文献   

8.
In this work, the authors investigated the apoptotic activities of Fe3 O4 /Ag nanocomposite biosynthesised by Spirulina platensis extract against MCF‐7 (human breast cancer cells). The physico‐chemical properties of prepared Fe3 O4 /Ag nanocomposite were studied by different spectroscopic methods. To evaluate the in vitro cytotoxic effect, MCF‐7 cells were treated with different concentrations of Fe3 O4 /Ag nanocomposite and examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. Moreover, apoptotic effects were also studied by Hoechst 33258 staining, caspase 3 activation assays, and annexin V‐fluorescein isothiocyanate (FITC) and propidium iodide staining. Microscopic observations of Fe3 O4 /Ag nanocomposites indicated approximately spherical shape and small particles in the size range of about 30–50 nm. The MTT assay result revealed that the Fe3 O4 /Ag nanocomposite causes a dose‐dependent cell proliferation reduction in MCF‐7 cells (IC50  = 135 μg/ml). Regarding to the Annexin V/PI staining result, the increase percentage of apoptotic cells (28.09%) was detected as compared to untreated cells. According to the caspase assay, Fe3 O4 /Ag nanocomposite enhances caspase 3 level. Furthermore, in vitro anti‐cancer activity of the nanocomposite was performed by Hoechst 33258 staining method. The proposed data suggest that Fe3 O4 /Ag nanocomposite may be an effective agent for the inhibition of breast cancer cells at in vitro level.Inspec keywords: nanomedicine, nanocomposites, toxicology, cancer, drug delivery systems, nanofabrication, cellular biophysics, nanoparticlesOther keywords: MCF‐7 cells, 5‐diphenyl‐tetrazolium, apoptotic effects, propidium iodide staining, dose‐dependent cell proliferation reduction, apoptotic cells, untreated cells, nanocomposite, Hoechst 33258 staining method, human breast cancer cells, physico‐chemical properties, spectroscopic methods, in vitro cytotoxic effect, in vitro anticancer activity, biosynthesis, caspase 3 activation assays, annexin V‐fluorescein isothiocyanate, FITC, Fe3 O4 ‐Ag  相似文献   

9.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

10.
Silver nanoparticles (AgNPs) have attracted the attention of researchers due to their properties. Biological synthesis of AgNPs is eco‐friendly and cost‐effective preferred to physical and chemical methods, which utilize environmentally harmful agents and large amounts of energy. Microorganisms have been explored as potential biofactories to synthesize AgNPs. Bacterial NP synthesis is affected by Ag salt concentration, pH, temperature and bacterial species. In this study, Bacillus spp., isolated from soil, were screened for AgNP synthesis at pH 12 with 5 mM Ag nitrate (AgNO3) final concentration at room temperature. The isolate with fastest color change and the best ultraviolet‐visible spectrum in width and height were chosen as premier one. AgNO3 and citrate salts were compared in terms of their influence on NP synthesis. Spherical Ag chloride (AgCl) NPs with a size range of 35–40 nm were synthesized in 1.5 mM Ag citrate solution. Fourier transform infrared analysis demonstrated that protein and carbohydrates were capping agents for NPs. In this study, antimicrobial and antitumor properties of the AgNP were investigated. The resulting AgCl NPs had bacteriostatic activity against four standard spp. And multi‐drug resistant strain of Pseudomonas aeruginosa. These NPs are also cytotoxic to cancer cell lines MCF‐7, U87MG and T293.Inspec keywords: silver compounds, nanoparticles, nanomedicine, nanofabrication, particle size, biomedical materials, microorganisms, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, proteins, macromolecules, antibacterial activity, tumours, cancer, cellular biophysics, toxicologyOther keywords: citrate salts, spherical Ag chloride, particle size, Ag citrate solution, Fourier transform infrared analysis, protein, carbohydrates, capping agents, antitumour properties, bacteriostatic activity, Pseudomonas aeruginosa, multidrug resistant strain, cancer cell lines MCF‐7,U87MG, size 35 nm to 40 nm, temperature 293 K to 298 K, AgCl, ultraviolet‐visible spectrum, colour change, room temperature, Ag nitrate final concentration, soil, bacterial species, temperature effect, pH, Ag salt concentration, biofactories, microorganisms, environmentally harmful agents, chemical methods, physical methods, antibacterial properties, electrical properties, mechanical properties, silver nanoparticles, multidrug resistant bacteria, antibiofilm effects, antibacterial effects, cytotoxic activity, Bacillus sp. 1/11, biosynthesised AgCl NPs  相似文献   

11.
A simple ultrasonic assisted chemical technique was used to synthesise cadmium oxide (CdO) nanoparticles (NPs) and CdO NPs/c‐Multiwalled carbon nanotube (c‐MWCNT) nanocomposite fibres.To confirm the physio‐chemico properties and to analyse surface morphology of the obtained nanomaterials X‐Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were performed. To evaluate the anti‐cancer property of CdO NPs, c‐MWCNT NPs and CdO NPs/c‐MWCNT nanocomposite fibres, an anti‐proliferative assay test (Methylthiazolyl diphenyl‐ tetrazolium bromide ‐ MTT assay) were performed on HeLa cells which further estimated IC50 value (Least concentration of sample in which nearly 50% of cells remain alive) under in‐vitro conditions. On comparison, CdONPs/c‐MWCNT based system was found to be superior by achieving 52.3% cell viability with its minimal IC50 value of 31.2 μg/ml. Lastly, the CdO NPs based system was taken up for an apoptotic study using DNA fragmentation assay for estimating its ability to cleave the DNA of the HeLa cells into internucleosomal fragments using the agarose gel electrophoresis method. In conclusion, based on our observations, CdO NPs/c‐MWCNT hybrid based system can be further used for the development of efficient drug delivery and therapeutic systems.Inspec keywords: drug delivery systems, electrophoresis, oxidation, toxicology, DNA, nanoparticles, drugs, field emission electron microscopy, scanning electron microscopy, nanofabrication, surface morphology, cancer, X‐ray diffraction, nanomedicine, cellular biophysics, filled polymers, biomedical materials, molecular biophysics, biochemistry, Fourier transform infrared spectra, multi‐wall carbon nanotubesOther keywords: c‐MWCNT nanoparticles, apoptotic study, HeLa cancer cell line, cadmium oxide nanoparticles, c‐MWCNT NPs, anti‐proliferative assay test [methyl thiazolyl diphenyl‐tetrazolium bromide assay], human epithelioid cervix carcinoma cells, live cells, CdO NP‐based system, IC50 concentration, HeLa cell line, cell deaths, CdO‐C  相似文献   

12.
In this study, the authors synthesised silver nanoparticles (AgNPs) using autoclave as a simple, unique and eco‐friendly approach. The effect of Zingiber officinale extract was evaluated as a reducing and stabiliser agent. According to transmission electron microscopy results, the AgNPs were in the spherical shape with a particle size of ∼17 nm. The biomedical properties of AgNPs as antibacterial agents and free radical scavenging activity were estimated. Synthesised AgNPs showed significant 1,1‐diphenyl‐2‐picryl‐hydrazyl free radical scavenging. Strong bactericidal activity was shown by the AgNPs on Gram‐positive and Gram‐negative bacteria. A maximum inhibition zone of ∼14 mm was obtained for epidermidis at a concentration of 60 μg/ml for sample fabricated at 24 h. The AgNPs also showed a significant cytotoxic effect against MCF‐7 breast cancer cell lines with an half maximal inhibitory concentration value of 62 μg/ml in 24 h by the MTT assay. It could be concluded that Z. officinale extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.Inspec keywords: nanoparticles, cancer, organic compounds, antibacterial activity, particle size, microorganisms, silver, visible spectra, ultraviolet spectra, biomedical materials, biochemistry, nanofabrication, free radicals, nanomedicine, toxicology, cellular biophysics, transmission electron microscopyOther keywords: unique approach, eco‐friendly approach, zingiber officinale, reducing agent, stabiliser agent, transmission electron microscopy results, antibacterial agents, free radical scavenging activity, synthesised AgNPs, 1‐diphenyl‐2‐picryl‐hydrazyl free radical scavenging, strong bactericidal activity, antimicrobial AgNPs, autoclave‐assisted synthesis, antioxidant activities, cytotoxic effect, silver nanoparticles, autoclave, time 24.0 hour  相似文献   

13.
The purpose of this study was to design a targeted anti‐cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross‐linking method using Zn2+ ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl as cross‐linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier‐transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non‐targeted ones were studied on MCF‐7 cells which overexpress luteinizing hormone‐releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF‐7 cells compared to free DOX and non‐targeted NPs.Inspec keywords: nanoparticles, polymer blends, cancer, cellular biophysics, drug delivery systems, drugs, biomedical materials, zinc, positive ions, Fourier transform infrared spectra, nanomedicine, proteinsOther keywords: luteinizing hormone‐releasing hormone, poly(methyl vinyl ether maleic acid), doxorubicin delivery, MCF‐7 breast cancer cell, anticancer drug delivery system, doxorubicin‐loaded PVM‐MA nanoparticle, ionic cross‐linking method, zinc ion, doxorubicin‐polymer ratio effect, zinc‐polymer ratio effect, particle size, zeta potential, loading efficiency, release efficiency, chemical coating, tiptorelin‐polyallylamin conjugation, PVM‐MA nanoparticle surface, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl, cross‐linking agent, Bradford assay, Fourier transform infrared spectroscopy, cytotoxicity, LHRH receptor, SKOV3 cell, Thiazolyl blue tetrazolium bromide assay, conjugation efficiency, time 72 h, Zn2+   相似文献   

14.
Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4   相似文献   

15.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

16.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

17.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

18.
The bio‐green methods of synthesis nanoparticles (NPs) have advantages over chemo‐physical procedures due to cost‐effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO‐NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO‐NPs and synthesised ZnO‐NP characterised using ultraviolet–visible, X‐ray diffraction, Fourier‐transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO‐NPs, cytotoxic and pro‐apoptotic potentials of NPs were also evaluated. The results showed that ZnO‐NPs have a hexagonal shape with 26 nm size. ZnO‐NPs synthesised in RP (RP/ZnO‐NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson‐Metastasis Breast cancer (MDA‐MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO‐NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio‐green synthesised RP/ZnO‐NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio‐green procedure for the synthesis of NPs as an antioxidant and as anti‐cancer agents.Inspec keywords: II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, toxicology, X‐ray diffraction, biochemistry, zinc compounds, nanomedicine, enzymes, biomedical materials, particle size, antibacterial activity, transmission electron microscopy, molecular biophysics, visible spectra, nanofabrication, cellular biophysics, nanoparticles, cancer, field emission scanning electron microscopy, Fourier transform infrared spectra, semiconductor growthOther keywords: bio‐green synthesis ZnO‐NPs, zinc oxide NPs, synthesised ZnO‐NP, field emission scanning electron microscope, transmission electron microscope, antioxidant properties, bio‐green synthesised RP‐ZnO‐NPs, Fourier‐transform infrared spectroscopy, X‐ray diffraction, breast cancer cells MDA‐MB, pro‐apoptotic potentials, cytotoxic effects, catalase enzyme, bio‐green procedure, time 48.0 hour, time 72.0 hour, size 26.0 nm, time 24.0 hour, ZnO  相似文献   

19.
In the present study, silver nanoparticles (AgNPs) were synthesised by adding 1 mM Ag nitrate solution to different concentrations (1%, 2.5%, 5%) of branch extracts of Eurycoma longifolia, a well known medicinal plant in South–East Asian countries. Characterisation of AgNPs was carried out using techniques such as ultraviolet–visible spectrophotometry, X‐ray diffractrometry, Fourier transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy. XRD analysis revealed face centre cubic structure of AgNPs and FTIR–ATR showed that primary and secondary amide groups in combination with the protein molecules present in the branch extract were responsible for the reduction and stabilisation of AgNPs. Furthermore, antioxidant [2,2‐diphenyl‐1‐picrylhydrazyl and 2,2′‐Azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid)], antimicrobial and anticancer activities of AgNPs were investigated. The highest bactericidal activity of these biogenic AgNPs was found against Escherichia coli with zone inhibition of 11 mm. AgNPs exhibited significant anticancer activity against human glioma cells (DBTRG and U87) and human breast adenocarcinoma cells (MCF‐7 and MDA‐MB‐231) with IC50 values of 33, 42, 60 and 38 µg/ml.Inspec keywords: biomimetics, cancer, antibacterial activity, nanoparticles, silver, microorganisms, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, attenuated total reflection, ultraviolet spectra, visible spectra, proteins, molecular biophysics, biochemistryOther keywords: Biomimetic synthesis, anticancer activity, Eurycoma longifolia branch extract‐mediated silver nanoparticles, nitrate solution, medicinal plant, ultraviolet‐visible spectrophotometry, X‐ray diffractometry, Fourier transform infrared‐attenuated total reflection spectroscopy, FTIR‐ATR spectroscopy, scanning electron microscopy, XRD, face centre cubic structure, primary amide groups, secondary amide groups, protein molecules, antioxidant, 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), antimicrobial activity, bactericidal activity, biogenic silver nanoparticles, Escherichia coli, zone inhibition, DBTRG human glioma cells, U87 human glioma cells, MCF‐7 human breast adenocarcinoma cells, MDA‐MB‐231 human breast adenocarcinoma cells, Ag  相似文献   

20.
Lung cancer is one of the leading causes of death in both the USA and Taiwan, and it is thought that the cause of cancer could be because of the gain of function of an oncoprotein or the loss of function of a tumour suppressor protein. Consequently, these proteins are potential targets for drugs. In this study, differentially expressed genes are identified, via an expression dataset generated from lung adenocarcinoma tumour and adjacent non‐tumour tissues. This study has integrated many complementary resources, that is, microarray, protein‐protein interaction and protein complex. After constructing the lung cancer protein‐protein interaction network (PPIN), the authors performed graph theory analysis of PPIN. Highly dense modules are identified, which are potential cancer‐associated protein complexes. Up‐ and down‐regulated communities were used as queries to perform functional enrichment analysis. Enriched biological processes and pathways are determined. These sets of up‐ and down‐regulated genes were submitted to the Connectivity Map web resource to identify potential drugs. The authors'' findings suggested that eight drugs from DrugBank and three drugs from NCBI can potentially reverse certain up‐ and down‐regulated genes'' expression. In conclusion, this study provides a systematic strategy to discover potential drugs and target genes for lung cancer.Inspec keywords: cellular biophysics, lung, cancer, drugs, genetics, tumours, lab‐on‐a‐chip, proteins, molecular biophysics, graph theory, query processing, medical computingOther keywords: down‐regulated gene expression, up‐regulated gene expression, potential target genes, DrugBank, potential drugs, connectivity map Web resource, biological processes, functional enrichment analysis, up‐regulated communities, down‐regulated communities, cancer‐associated protein complexes, k‐communities, highly‐dense modules, PPIN, graph theory analysis, lung cancer protein‐protein interaction network, MIPS, BioGrid, ArrayExpress, microarray, nontumour tissues, human lung adenocarcinoma tumour, bioconductor package, tumour suppressor protein, oncoprotein, nonsmall cell lung cancer, in silico identification  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号