首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

2.
Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio‐frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10–15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold‐coated magnetic nanoparticles was performed in the next step. A self‐assembled monolayer was created using cysteamine (2‐aminoethanethiol) molecules, which have two different end groups (SH and NH2). These molecules react with the gold surface by SH groups. The NH2 groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti‐N‐CAM Clone NCAM‐OB11) was immobilised by the 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide/N‐hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody‐nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody‐bound gold‐coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.  相似文献   

3.
The purpose of this study was to design a targeted anti‐cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross‐linking method using Zn2+ ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl as cross‐linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier‐transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non‐targeted ones were studied on MCF‐7 cells which overexpress luteinizing hormone‐releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF‐7 cells compared to free DOX and non‐targeted NPs.Inspec keywords: nanoparticles, polymer blends, cancer, cellular biophysics, drug delivery systems, drugs, biomedical materials, zinc, positive ions, Fourier transform infrared spectra, nanomedicine, proteinsOther keywords: luteinizing hormone‐releasing hormone, poly(methyl vinyl ether maleic acid), doxorubicin delivery, MCF‐7 breast cancer cell, anticancer drug delivery system, doxorubicin‐loaded PVM‐MA nanoparticle, ionic cross‐linking method, zinc ion, doxorubicin‐polymer ratio effect, zinc‐polymer ratio effect, particle size, zeta potential, loading efficiency, release efficiency, chemical coating, tiptorelin‐polyallylamin conjugation, PVM‐MA nanoparticle surface, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl, cross‐linking agent, Bradford assay, Fourier transform infrared spectroscopy, cytotoxicity, LHRH receptor, SKOV3 cell, Thiazolyl blue tetrazolium bromide assay, conjugation efficiency, time 72 h, Zn2+   相似文献   

4.
This study describes the development and testing of a simple and novel enzyme‐free nanolabel for the detection and signal amplification in a sandwich immunoassay. Gold nanoparticles decorated reduced graphene oxide (rGOAu) was used as the nanolabel for the quantitative detection of human immunoglobulin G (HIgG). The rGOAu nanolabel was synthesised by one pot chemical reduction of graphene oxide and chloroauric acid using sodium borohydride. The pseudo‐peroxidase behaviour of rGOAu makes the nanolabel unique from other existing labels. The immunosensing platform was fabricated using self‐assembled monolayers of 11‐mercaptoundecanoic acid (11‐MUDA) on a gold disc electrode. The covalent immobilisation of antibody was achieved through the bonding of the carboxyl group of 11‐MUDA and the amino group of the antibody using chemical linkers [1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide] and N ‐hydroxysuccinimide. The fabricated immunosensor exhibited a linear range that included HIgG concentrations of 62.5–500 ng ml−1. The sensor was also used for the testing of HIgG in the blood sample.Inspec keywords: proteins, nanomedicine, reduction (chemical), chemical sensors, nanofabrication, electrochemical sensors, voltammetry (chemical analysis), gold, oxidation, self‐assembly, monolayers, molecular biophysics, biochemistry, biosensors, nanoparticles, nanosensors, blood, grapheneOther keywords: gold nanoparticles, voltammetric immunosensing, enzyme‐free nanolabel, signal amplification, sandwich immunoassay, human immunoglobulin G, rGOAu nanolabel, chloroauric acid, sodium borohydride, 11‐mercaptoundecanoic acid, 11‐MUDA, gold disc electrode, chemical linkers, 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide], HIgG concentrations, reduced graphene oxide nanolabel, quantitative HIgG detection, one pot chemical reduction, covalent antibody immobilisation, carboxyl group bonding, pseudo‐peroxidase behaviour, self‐assembled monolayers, N‐hydroxysuccinimide, immunosensor, blood sample, Au‐CO  相似文献   

5.
The authors report a novel, effective and enhanced method of conjugating anticancer drug, paclitaxel and gallic acid with magnetosomes. Here, anticancer drugs were functionalised with magnetosomes membrane by direct and indirect (via crosslinkers: glutaraldehyde and 3‐aminopropyltriethoxysilane) adsorption methods. The prepared magnetosome–drug conjugates were characterised by Fourier transform infrared, zeta potential, field‐emission scanning electron microscope and thermogravimetric analysis/differential scanning calorimetry. The drug‐loading efficiency and capacity were found to be 87.874% for paclitaxel (MP) and 71.3% for gallic acid (MG), respectively as calculated by ultraviolet spectroscopy and high‐performance liquid chromatography. The drug release demonstrated by the diffusion method in phosphate buffer (PBS), showing a prolonged drug release for MP and MG, respectively. The cytotoxicity effect of the MP and MG displayed cytotoxicity of 69.71%, 55.194% against HeLa and MCF‐7 cell lines, respectively. The reactive oxygen species, acridine orange and ethidium bromide and 4, 6‐diamidino‐2‐phenylindole staining of the drug conjugates revealed the apoptotic effect of MP and MG. Further, the regulation of tumour suppressor protein, p53 was determined by western blotting which showed an upregulation of p53. Comparatively, the magnetosome–drug conjugates prepared by direct adsorption achieved the best effects on the drug‐loading efficiency and the increased percentage of cancer cell mortality and the upregulation of P53. The proposed research ascertains that magnetosomes could be used as effective nanocarriers in cancer therapy.Inspec keywords: cancer, molecular biophysics, cellular biophysics, tumours, drug delivery systems, adsorption, scanning electron microscopy, biomedical materials, nanofabrication, biochemistry, drugs, proteins, nanomedicine, toxicology, nanobiotechnology, nanoparticles, Fourier transform spectra, electrokinetic effects, differential scanning calorimetry, infrared spectra, chromatographyOther keywords: magnetosomes based drug, cancer therapy, enhanced method, gallic acid, anticancer drugs, magnetosomes membrane, glutaraldehyde, 3‐aminopropyltriethoxysilane, prepared magnetosome–drug conjugates, zeta potential field‐emission scanning electron microscope, drug‐loading efficiency, high‐performance liquid chromatography, diffusion method, phosphate buffer saline, prolonged drug release, cytotoxicity effect, MCF‐7 cell lines, 6‐diamidino‐2‐phenylindole staining, apoptotic effect, direct adsorption, cancer cell mortality, effective nanocarriers  相似文献   

6.
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti‐cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti‐cancer activity is elucidated with MCF‐7 cell death. Structural characteristics of Mobil Composition of Matter ‐ 41(MCM‐41) as determined by high‐resolution transmission electron microscopy (HR‐TEM) shows that MCM‐41 size ranges from 100 to 200 nm diameters with pore size 2–10 nm for drug adsorption. The authors found 80–90% of curcumin is loaded on MCM‐41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin‐loaded MCM‐41 induced 50% mortality of MCF‐7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM‐41 effectively decreased cell survival of MCF‐7 cells in vitro.Inspec keywords: cancer, cellular biophysics, nanoparticles, nanomedicine, biomedical materials, polymers, mesoporous materials, transmission electron microscopy, drugs, adsorptionOther keywords: polyethylenimine‐modified curcumin‐loaded mesoporus silica nanoparticle, MCF‐7 cell line, breast cancer, cancer cells, drug resistance, multipotent activity, therapeutic potential, anticancer drug, mesoporous silica nanoparticle, MCF‐7 cell death, high‐resolution transmission electron microscopy, drug adsorption, curcumin‐loaded MCM‐41, nutraceutical curcumin, size 2 nm to 10 nm, size 100 nm to 200 nm  相似文献   

7.
The aim of this study was to green synthesised silver nanoparticles (AgNPs) using Centella asiatica leaf extract and investigate the cytotoxic and apoptosis‐inducing effects of these nanoparticles in MCF‐7 breast cancer cell line. The characteristics and morphology of the green synthesised AgNPs were evaluated using transmission electron microscopy, scanning electron microscopy, UV–visible spectroscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The MTT assay was used to investigate the anti‐proliferative activity of biosynthesised nanoparticles in MCF‐7 cells. Apoptosis test was performed using flow cytometry and expression of caspase 3 and 9 genes. The spherical AgNPs with an average size of 19.17 nm were synthesised. The results showed that biosynthesised AgNPs exhibited cytotoxicity, anti‐cancer, apoptosis induction, and increased expression of genes encoding for caspases 3 and 9 in MCF‐7 cancer cells in a concentration‐ and time‐dependent manner. It seems that green synthesised AgNPs have potential uses for pharmaceutical industries.Inspec keywords: ultraviolet spectra, transmission electron microscopy, cellular biophysics, infrared spectra, visible spectra, nanofabrication, cancer, toxicology, nanomedicine, nanoparticles, biomedical materials, scanning electron microscopy, silver, Fourier transform spectra, X‐ray diffraction, genetics, enzymes, botany, biochemistryOther keywords: spherical AgNPs, biosynthesised AgNPs, anti‐cancer, apoptosis induction, green synthesised AgNPs, MCF‐7 breast cancer cell line, green synthesised silver nanoparticles, Ag, caspase gene expression, flow cytometry, anti‐proliferative activity, MTT assay, pharmaceutical industries, cytotoxicity, UV–visible spectroscopy, nanoparticle morphology, scanning electron microscopy, Centella asiatica leaf extract, biosynthesised nanoparticles, Fourier‐transform infrared spectroscopy, transmission electron microscopy  相似文献   

8.
In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB‐231) and (MCF‐7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB‐231 and MCF‐7 after being examined with MTT (3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB‐231 cell line than in MCF‐7. Therefore, further cytotoxicity tests were performed on MDA MB‐231 cell line.Inspec keywords: sol‐gel processing, nanoparticles, nanofabrication, magnesium compounds, zinc compounds, toxicology, biological organs, cancer, cellular biophysics, nanomedicine, calcination, differential thermal analysis, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, particle size, organic compoundsOther keywords: sol‐gel method, cytotoxic effects, breast cancer cell line, MDA MB‐231 in vitro, nanocrystalline magnesium zinc ferrite nanoparticles, copper nitrate, ferric nitrate, raw materials, calcined samples, differential thermal analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, average particle size, cytotoxicity testing, human breast cancer cells, mild toxic effect, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyltetrazolium bromide) assay, cell viability, MCF‐7, MDA MB‐231 cell line, size 17 nm to 41 nm  相似文献   

9.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

10.
Graphene‐based nanomaterials are gaining importance in biomedicine because of their large surface areas, solubility, and biocompatibility. Green synthesis is the most economical method for application, as it is rapid and sustainable. Biofunctionalized reduced graphene oxide (TrGO) nanosheets were synthesized using methanol extract of Turbinaria ornata, and bioreduction of graphene oxide was primarily confirmed and characterized using UV‐visible, Fourier transform infrared (FTIR), and X‐ray diffraction spectroscopy and further characterized by zeta potential and transmission electron microscopy. The FTIR spectra of TrGO showed a decrease in the band intensities of oxygen groups, thus confirming effective deoxygenation. The zeta potential value of −34.6 mV revealed that synthesized TrGO was highly stable. The cytotoxic effect of TrGO against MCF‐10A and MCF‐7 cells was ascertained using MTT assay, showed a greater cytotoxic effect on MCF‐7 cells. The IC50 of TrGO treatment against MCF‐7 was calculated to be 31.25 µg, which is onefold lower than the cytotoxic effect of methanolic extract of T. ornata (60.0 ± 1.14 µg/ml). In addition, there was a statistically significant difference in cell viability between MCF‐10A and MCF‐7 cells in the treatment of TrGO. Hence, this study results in an efficient green reductant for producing rGO nanosheets that possess cytotoxicity against breast cancer cells.  相似文献   

11.
The motive of work was to develop a multi‐walled carbon nanoplatform through facile method for transportation of potential anticancer drug doxorubicin (DOX). Folic acid (FA)‐ethylene diamine (EDA) anchored and acid functionalised MWCNTs were covalently grafted with DOX via π–π stacking interaction. The resultant composite was corroborated by 1 H NMR, FTIR, XRD, EDX, SEM, and DSC study. The drug entrapment efficiency of FA‐conjugated MWCNT was found high and stability study revealed its suitability in biological system. FA‐EDA‐MWCNTs‐DOX conjugate demonstrated a significant in vitro anticancer activity on human breast cancer MCF‐7 cells. MTT study revealed the lesser cytotoxicity of folate‐conjugated MWCNTs. The obtained results demonstrated the targeting specificity of FA‐conjugate via overexpressed folate receptor deemed greater scientific value to overcome multidrug protection during cancer therapy. The proposed strategy is a gentle contribution towards development of biocompatible targeted drug delivery and offers potential to address the current challenges in cancer therapy.Inspec keywords: toxicology, nanoparticles, biomedical materials, scanning electron microscopy, drug delivery systems, nanofabrication, nanomedicine, nanocomposites, cellular biophysics, cancer, drugs, multi‐wall carbon nanotubes, Fourier transform infrared spectra, X‐ray chemical analysis, differential scanning calorimetry, proton magnetic resonance, organic compoundsOther keywords: facile synthesis, multiwalled carbon nanotube, precise delivery, multiwalled carbon nanoplatform, drug entrapment efficiency, FA‐conjugated MWCNT, stability study, biological system, human breast cancer MCF‐7 cells, MTT study, folate‐conjugated MWCNTs, overexpressed folate receptor, cancer therapy, biocompatible targeted drug delivery, anticancer drug doxorubicin, π‐π stacking interaction, composite material, 1 H NMR, in vitro anticancer activity, folic acid grafted nanoparticle, folic acid‐ethylene diamine, acid functionalised MWCNT, FTIR spectra, XRD, EDX, SEM, FA‐EDA‐MWCNT‐DOX conjugate, cytotoxicity, DSC, C  相似文献   

12.
Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L‐asparaginase (L‐ASNase) is one of the first drugs used in ALL treatment. Anti‐tumor activity of L‐ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L‐ASNase polymer bioconjugate to improve pharmacokinetic, increase half‐life and stability of the enzyme. The conjugations were achieved by the cross‐linking agent of 1‐ethyl‐3‐(3‐ dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L‐ASNase to two biodegradable polymers including; Ecoflex® and poly (styrene‐co‐maleic acid) (PSMA) nanoparticles. To achieve optimal L‐ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half‐life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex® nanoparticles.Inspec keywords: enzymes, polymer blends, nanomedicine, biomedical materials, blood, nanoparticles, cancer, molecular biophysics, molecular configurations, biochemistry, conducting polymers, electrokinetic effects, particle size, bonds (chemical), biodegradable materials, pHOther keywords: enhanced stability, L‐asparaginase, bioconjugation, poly(styrene‐co‐maleic acid), Ecoflex nanoparticles, acute lymphoblastic leukaemia, white blood cell cancer, children, drugs, ALL treatment, antitumour activity, biological environments, L‐ASNase polymer bioconjugate, pharmacokinetic, enzyme, crosslinking agent, amide bond, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, carboxylic acid groups, polymeric nanoparticles, EDC conjugation, biodegradable polymers, PSMA nanoparticles, optimal L‐ASNase nanoparticles, particle size, zeta potential, pH changes, proteolysis, native enzyme, conjugated enzyme  相似文献   

13.
Solid lipid nanoparticles (SLNs) comprise non‐toxic surface‐active lipidic agents combined with appropriate ratios of drugs or essential oils. The goal of this research was to investigate the effects of the SLN synthesised using essential oils of Foeniculum vulgare on the MCF‐7 breast cancer cell line. SLNs were prepared by homogenisation and ultrasound techniques and characterised by dynamic light scattering (DLS), zeta potential assessment, and transmission electron microscopy (TEM). 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay (MTT assay), flow‐cytometry, and Acridine‐Orange assay were employed for assessing the biological activities of the SLNs. The average particle size was 55.43 nm and the net surface charge was −29.54 ± 11.67 mV. TEM showed that the mean particle size was 33.55 nm and the synthesised SLNs had a uniform round morphology. The MTT assay showed that the prepared SLNs had high toxicity against MCF‐7 cells and low toxicity against normal HUVECs cells. Flow‐cytometry revealed a noteworthy rise in the subG1 peak of the cell cycle in the cancer cells treated with SLNs compared to the controls, indicating apoptosis in cancer cells. The results also showed discolouration in SLNs‐treated cells, which further confirmed the induction of apoptosis and the toxicity of the SLNs against MCF‐7 cells.  相似文献   

14.
Silver nanoparticles (AgNPs) have been undeniable for its antimicrobial activity while its antitumour potential is still limited. Therefore, the present study focused on determining cytotoxic effects of AgNPs on Michigan cancer foundation‐7 (MCF‐7) breast cancer cells and its corresponding mechanism of cell death. Herein, the authors developed a bio‐reduction method for AgNPs synthesis using actinomycetes isolated from marine soil sample. The isolated strain was identified by 16s ribotyping method and it was found to be Streptomyces atrovirens. Furthermore, the synthesised AgNPs were characterised by various bio‐analytical techniques such as ultraviolet–visible spectrophotometer, atomic force microscopy, transmission electron microscopy, Fourier transform infra‐red spectroscopy, and X‐ray diffraction. Moreover, the results of 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay reveals 44.51 µg of AgNPs to have profound inhibition of cancer cell growth; furthermore, the inhibition of MCF‐7 breast cancer cell line was found to be dose dependent on treatment with AgNPs. Acridine orange and ethidium bromide double staining methods were performed for cell morphological analysis. The present results showed that biosynthesised AgNPs might be emerging alternative biomaterials for human breast cancer therapy.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, tumours, cancer, toxicology, nanofabrication, microorganisms, reduction (chemical), ultraviolet spectra, visible spectra, atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, biomimeticsOther keywords: acridine orange, ethidium bromide double staining methods, cell morphological analysis, alternative biomaterials, human breast cancer therapy, time 16 s, Ag, dose dependence, MCF‐7 breast cancer cell line inhibition, cancer cell growth inhibition, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, ultraviolet‐visible spectrophotometer, bioanalytical techniques, ribotyping method, isolated strain, marine soil sample, bioreduction method, cell death, Michigan cancer foundation‐7 breast cancer cells, cytotoxic effects, antitumour potential, antimicrobial activity, human breast cancer cells, potential anticancer activity, Streptomyces atrovirens, silver nanoparticles, biomimetic synthesis  相似文献   

15.
Biosynthesis of nanoparticles (NPs) using biomass is now one of the best methods for synthesising NPs due to their nontoxic and biocompatibility. Plants are the best choice among all biomass to synthesise large‐scale NPs. The objectives of this study were to synthesise zinc oxide nanoparticles (ZnO‐NPs) using Anjbar (root of Persicaria bistorta) [An/ZnO‐NPs] and investigate the cytotoxic and anti‐oxidant effects. For this purpose, the An/ZnO‐NPs were synthesised by using Bistort extract and characterised using UV–Visible spectroscopy, transmission electron microscope, field emission scanning electron microscope, x‐ray diffraction and Fourier‐transform infrared spectroscopy. The cytotoxic effects of the An/ZnO‐NPs on MCF‐7 cells were followed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays at 24, 48, and 72 h. Nuclear morphology changed and apoptosis in cells was investigated using acridine orange/propodium iodide (AO/PI) staining and flow cytometry analysis. The pure biosynthesised ZnO‐NPs were spherical in shape and particles sizes ranged from 1 to 50 nm. Treated MCF‐7 cells with different concentrations of ZnO‐NPs inhibited cell viability in a time‐ and dose‐dependent manner with IC50 about 32 μg/ml after 48 h of incubation. In flow cytometry analysis the sub‐G1 population, which indicated apoptotic cells, increased from 12.6% at 0 μg/ml (control) to 92.8% at 60 μg/ml, 48 h after exposure. AO/PI staining showed that the treated cells displayed morphologic evidence of apoptosis, compared to untreated groups. Inspec keywords: cancer, cellular biophysics, toxicology, particle size, nanofabrication, X‐ray diffraction, nanomedicine, nanoparticles, ultraviolet spectra, scanning electron microscopy, visible spectra, transmission electron microscopy, patient treatment, field emission electron microscopy, Fourier transform infrared spectra, drug delivery systemsOther keywords: anjbar, cytotoxic effects, human breast cancer cell line, biomass, transmission electron microscope, field emission scanning electron microscope, Fourier‐transform infrared spectroscopy, flow cytometry analysis, ZnO‐NPs inhibited cell viability, antioxidant effects, MCF‐7 cells, biosynthesised ZnO‐NP, biosynthesised ZnO‐NP, acridine orange‐propodium iodide staining, An‐ZnO‐NP, Persicaria bistorta, zinc oxide nanoparticle biosynthesis, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide  相似文献   

16.
Epirubicin (EPI) is one of the potent breast cancer (BC) chemotherapeutic agents, but its adverse effects limit its efficacy. Herein, EPI was selected to be loaded in liposomal carrier, which has been targeted by a monoclonal antibody, Herceptin. The preparation process of liposomes was a modified ethanol injection method followed by Herceptin conjugation. The in vitro cell toxicity and cellular uptake of optimum formulation against HER2+ and HER2− cancer cell lines were evaluated. The results showed that the drug loading (DL%) and encapsulation efficiency (EE%) of liposome preparation method yielded 30.62% ± 0.49% and 62.39% ± 8.75%, respectively. The average size of naked liposomes (EPI‐Lipo) and immunoliposomes (EPI‐Lipo‐mAb) was 234 ± 9.86 and 257.26 ± 6.25 nm, with a relatively monodisperse distribution, which was confirmed by SEM micrographs. The release kinetic followed Higuchi model for both naked and immunoliposomes. In vitro cytotoxicity study on three different BC cell lines including BT‐20, MDA‐MB‐453 and MCF‐7 demonstrated higher toxicity of EPI in the Herceptin conjugated form (EPI‐Lipo‐mAb) in comparison with the free EPI and EPI‐Lipo in HER2 overexpressing cell line. In addition, the cellular uptake study showed a higher uptake of immunoliposomes by MCF‐7 cells in comparison with naked liposomes. In conclusion, these data show that the targeted delivery of EPI to breast cancer cells can be achieved by EPI‐Lipo‐mAb in vitro, and this strategy could be used for breast cancer therapy with further studies.  相似文献   

17.
Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4   相似文献   

18.
In this work, the authors investigated the apoptotic activities of Fe3 O4 /Ag nanocomposite biosynthesised by Spirulina platensis extract against MCF‐7 (human breast cancer cells). The physico‐chemical properties of prepared Fe3 O4 /Ag nanocomposite were studied by different spectroscopic methods. To evaluate the in vitro cytotoxic effect, MCF‐7 cells were treated with different concentrations of Fe3 O4 /Ag nanocomposite and examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. Moreover, apoptotic effects were also studied by Hoechst 33258 staining, caspase 3 activation assays, and annexin V‐fluorescein isothiocyanate (FITC) and propidium iodide staining. Microscopic observations of Fe3 O4 /Ag nanocomposites indicated approximately spherical shape and small particles in the size range of about 30–50 nm. The MTT assay result revealed that the Fe3 O4 /Ag nanocomposite causes a dose‐dependent cell proliferation reduction in MCF‐7 cells (IC50  = 135 μg/ml). Regarding to the Annexin V/PI staining result, the increase percentage of apoptotic cells (28.09%) was detected as compared to untreated cells. According to the caspase assay, Fe3 O4 /Ag nanocomposite enhances caspase 3 level. Furthermore, in vitro anti‐cancer activity of the nanocomposite was performed by Hoechst 33258 staining method. The proposed data suggest that Fe3 O4 /Ag nanocomposite may be an effective agent for the inhibition of breast cancer cells at in vitro level.Inspec keywords: nanomedicine, nanocomposites, toxicology, cancer, drug delivery systems, nanofabrication, cellular biophysics, nanoparticlesOther keywords: MCF‐7 cells, 5‐diphenyl‐tetrazolium, apoptotic effects, propidium iodide staining, dose‐dependent cell proliferation reduction, apoptotic cells, untreated cells, nanocomposite, Hoechst 33258 staining method, human breast cancer cells, physico‐chemical properties, spectroscopic methods, in vitro cytotoxic effect, in vitro anticancer activity, biosynthesis, caspase 3 activation assays, annexin V‐fluorescein isothiocyanate, FITC, Fe3 O4 ‐Ag  相似文献   

19.
In this study, the synthesis of a series of bay‐substituted donor–acceptor–donor (D–A–D) type perylene diimide derivatives (3a–3d) has been reported as an acceptor for the small‐molecule‐based organic solar cells (SM‐OSCs) by the Suzuki coupling method. It has been evaluated for the antimicrobial activity against some of the bacteria and fungi. The synthesised SMs were confirmed by Fourier transform‐infrared spectroscopy, nuclear magnetic resonance (NMR), and high resolution mass spectroscopy (HR‐MS). The SMs showed absorption up to 750 nm, which eventually reduced the optical band gap Egopt to  < 2 eV. SMs showed thermal stability up to 400 °C. In the SM‐OSC, the SMs showed a power conversion efficiency of  < 1% with the P3HT donor in bulk hetero‐junction device structure. Additionally, the new SMs showed antimicrobial activity against Gram‐negative bacteria such as Escherichia coli Gram‐positive bacteria such as Bacillus subtilis and antifungal activity against the Candida albicans, and Aspergillus niger. Cytotoxicity studies were carried out against the breast cancer cell lines MCF‐7 using MTT assay method. The results revealed that the SMs was able to inhibit the cancer cells. LD50 s calculated for the SMs 3a–3d were between 200 and 400 µg/ml.Inspec keywords: antibacterial activity, solar cells, microorganisms, Fourier transform spectra, infrared spectra, nuclear magnetic resonance, photonic band gap, thermal stability, cellular biophysics, toxicology, cancer, nanomedicine, organic semiconductors, mass spectroscopy, biomedical materialsOther keywords: bay‐substituted perylene diimide‐based D‐A‐D‐type SM acceptors, donor‐acceptor‐donor type perylene diimide derivatives, small‐molecule‐based organic solar cells, SM‐OSC, Suzuki coupling method, antimicrobial activity, bacteria, fungi, Fourier transform infrared spectroscopy, NMR, HR‐MS, optical band gap, P3HT donor, bulk hetero‐junction device structure, Gram‐negative bacteria, Escherichia coli Gram‐positive bacteria, Bacillus subtilis, antifungal activity, Candida albicans, Aspergillus niger, cytotoxicity, breast cancer cell lines MCF‐7, MTT assay method, cancer cells, wavelength 750 nm, temperature 400 degC  相似文献   

20.
In the present study, silver nanoparticles (AgNPs) were synthesised by adding 1 mM Ag nitrate solution to different concentrations (1%, 2.5%, 5%) of branch extracts of Eurycoma longifolia, a well known medicinal plant in South–East Asian countries. Characterisation of AgNPs was carried out using techniques such as ultraviolet–visible spectrophotometry, X‐ray diffractrometry, Fourier transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy. XRD analysis revealed face centre cubic structure of AgNPs and FTIR–ATR showed that primary and secondary amide groups in combination with the protein molecules present in the branch extract were responsible for the reduction and stabilisation of AgNPs. Furthermore, antioxidant [2,2‐diphenyl‐1‐picrylhydrazyl and 2,2′‐Azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid)], antimicrobial and anticancer activities of AgNPs were investigated. The highest bactericidal activity of these biogenic AgNPs was found against Escherichia coli with zone inhibition of 11 mm. AgNPs exhibited significant anticancer activity against human glioma cells (DBTRG and U87) and human breast adenocarcinoma cells (MCF‐7 and MDA‐MB‐231) with IC50 values of 33, 42, 60 and 38 µg/ml.Inspec keywords: biomimetics, cancer, antibacterial activity, nanoparticles, silver, microorganisms, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, attenuated total reflection, ultraviolet spectra, visible spectra, proteins, molecular biophysics, biochemistryOther keywords: Biomimetic synthesis, anticancer activity, Eurycoma longifolia branch extract‐mediated silver nanoparticles, nitrate solution, medicinal plant, ultraviolet‐visible spectrophotometry, X‐ray diffractometry, Fourier transform infrared‐attenuated total reflection spectroscopy, FTIR‐ATR spectroscopy, scanning electron microscopy, XRD, face centre cubic structure, primary amide groups, secondary amide groups, protein molecules, antioxidant, 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), antimicrobial activity, bactericidal activity, biogenic silver nanoparticles, Escherichia coli, zone inhibition, DBTRG human glioma cells, U87 human glioma cells, MCF‐7 human breast adenocarcinoma cells, MDA‐MB‐231 human breast adenocarcinoma cells, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号