首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

2.
Ethnic value of many known plants are underexploited for medicinal application besides their proven traditional qualities. One such plant known for wound healing is Tridax procumbens. This plant has wound healing property and is commercially unexploited. Silver nanoparticle (Ag‐NP) were synthesized using this plant extracts using different solvents (methanol, ethyl acetate and aqueous), which exhibit resonance at 426, 424 and 418 nm, respectively. This plant‐mediated Ag‐NPs have strong anti‐bactericidal activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, Serratia marcescens and Bacillus subtilis with methanol extract. Further instance, elemental composition was confirmed by energy dispersive X‐ray analysis and particle size ranges were observed at 80–200 nm with spherical shape nanoparticles by scanning electron microscopy and transmission electron microscopy analysis. The biocompatibility of Ag‐NPs was assessed using fibroblast cell line (L929) by MTT assay with 109.35 µg IC50 value. The oxygen plasma treated and non‐treated bamboo spunlaced nonwoven fabrics were coated with the Ag‐NPs by exhaust method. Contact angle and water retention revealed significant difference in absorption ability of plasma treated fabric. Field emission scanning electron microscopy revealed the presence of Ag‐NPs in plasma coated fabrics. The fabricated cloth was studied for anti‐microbial and microbial penetration ability.Inspec keywords: solvents (industrial), organic compounds, woven composites, field emission scanning electron microscopy, plasma materials processing, contact angle, transmission electron microscopy, X‐ray diffraction, fabrics, biomedical materials, wounds, silver, nanoparticles, particle size, nanofabrication, thermal analysis, antibacterial activity, microorganisms, X‐ray chemical analysisOther keywords: biomedical application, ethnic value, medicinal application, wound healing property, silver nanoparticle synthesis, methanol, ethyl acetate, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, nonwoven fabrics, field emission scanning electron microscopy, plasma coated fabrics, fabricated cloth, solvents, antibactericidal activity, Staphylococcus aureus, particle size, transmission electron microscopy, oxygen plasma treatment, bamboo material, Tridax procumbens extracts, Serratia marcescens, Bacillus subtilis, elemental composition, energy dispersive X‐ray analysis, scanning electron microscopy, material biocompatibility, fibroblast cell line, exhaust method, contact angle, water retention, absorption ability, antimicrobial property, microbial penetration ability, size 424.0 nm, size 418.0 nm, size 80.0 nm to 200.0 nm, size 426.0 nm, Ag  相似文献   

3.
An environmentally friendly and rapid procedure was developed to synthesise silver nanoparticles (Ag‐NPs) by Chamaemelum nobile extract and to evaluate its in vivo anti‐inflammatory and antioxidant activities. The ultraviolet–visible absorption spectrum of the synthesised Ag‐NPs showed an absorbance peak at 422. The average size of spherical nanoparticles was 24 nm as revealed by transmission electron microscopy. Fourier transform infra‐red spectroscopy analysis supported the presence of biological active compounds involved in the reduction of Ag ion and X‐ray diffraction confirmed the crystalline structure of the metallic Ag. The anti‐inflammatory and antioxidant activity of the Ag‐NPs was investigated against carrageenan‐induced paw oedema in mice. The levels of malondialdehyde (MDA) and antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and inflammatory cytokines tumour necrosis factor (TNF‐α), interferon gamma and interleukin (IL)‐6, IL‐1β were assessed in this respect. The results demonstrated that anti‐inflammatory activity of the Ag‐NPs might be due to the ability of the nanoparticles to reduce IL‐1β, IL‐6 and TNF‐α. Moreover, reduction of antioxidant enzymes along with an increase in MDA level shows that the anti‐inflammatory activity of the synthesised Ag‐NPs by C. nobile is attributed to its ameliorating effect on the oxidative damage.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, particle size, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, crystal structure, enzymes, molecular biophysics, tumours, biomedical materials, nanomedicineOther keywords: Chamaemelum nobile extract, oxidative stress, mice paw, silver nanoparticles, antiinflammatory activity, antioxidant activity, ultraviolet‐visible absorption spectrum, spherical nanoparticle size, transmission electron microscopy, Fourier transform infrared spectroscopy, biological active compounds, X‐ray diffraction, crystalline structure, carrageenan‐induced paw oedema, malondialdehyde, antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase, inflammatory cytokines, tumour necrosis factor, interferon gamma, interleukin, IL‐1β, IL‐6, TNF‐α, MDA level, Ag  相似文献   

4.
Cellulose is the natural biopolymer normally used as supporting agent with enhanced applicability and properties. In present study, cellulose isolated from citrus waste is used for silver nanoparticles (Ag‐NPs) impregnation by a simple and reproducible method. The Ag‐NPs fabricated cellulose (Ag‐Cel) was characterised by powder X‐rays diffraction, Fortier transform infrared spectroscopy and scanning electron microscopy. The thermal stability was studied by thermo‐gravimetric analysis. The antibacterial activity performed by disc diffusion assay reveals good zone of inhibition against Staphylococcus aureus and Escherichia coli by Ag‐Cel as compared Ag‐NPs. The discs also displayed more than 90% reduction of S. aureus culture in broth within 150 min. The Ag‐Cel discs also demonstrated minor 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity and total reducing power ability while moderate total antioxidant potential was observed. Ag‐Cel effectively degrades methylene‐blue dye up to 63.16% under sunlight irradiation in limited exposure time of 60 min. The Ag‐NPs impregnated cellulose can be effectively used in wound dressing to prevent bacterial attack and scavenger of free radicals at wound site, and also as filters for bioremediation and wastewater purification.Inspec keywords: silver, nanoparticles, particle reinforced composites, nanocomposites, filled polymers, wounds, nanomedicine, biomedical materials, photochemistry, catalysis, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, thermal stability, thermal analysis, antibacterial activity, dyes, wastewater treatment, contaminated site remediation, nanofabricationOther keywords: silver nanoparticles, impregnated cellulose composite, wound healing, photocatalysis, natural biopolymer, citrus waste, powder X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal stability, thermo‐gravimetric analysis, antibacterial activity, disc diffusion assay, Staphylococcus aureus, Escherichia coli, inhibition zone, broth, 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity, total reducing power ability, total antioxidant potential, methylene‐blue dye, sunlight irradiation, wound dressing, bacterial attack, free radical scavenger, wastewater purification, bioremediation filters, wound site, time 60 min, Ag  相似文献   

5.
This study reports an eco‐friendly‐based method for the preparation of biopolymer Ag–Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK‐(Ag–Au) NPs was confirmed by UV‐absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK‐(Ag–Au) NPs were of 1–12 nm in size. The anti‐proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real‐time polymerase chain reaction (PCR) techniques. Expression studies revealed up‐regulation of p53, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors (PPAR) PPARa and PPARb, genes and down‐regulation of Bcl‐2 and Bcl‐x(K) genes, in B16F10 cells treated with GK‐(Ag–Au) NPs confirming the anti‐proliferative properties of the nanoparticles.Inspec keywords: nanomedicine, transmission electron microscopy, genetics, cellular biophysics, molecular biophysics, enzymes, nanofabrication, gold, silver, scanning electron microscopy, nanoparticles, Fourier transform infrared spectra, atomic force microscopy, biomedical materialsOther keywords: size 1.0 nm to 12.0 nm, Ag‐Au, anti‐proliferative assessment, eco‐friendly‐based method, anti‐proliferative activity, anti‐proliferative properties, biopolymer‐based Ag–Au bimetallic nanoparticle, Cochlospermum gossypium, gum kondagogu, biopolymer preparation, biogenic synthesis, UV‐absorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, MTT assay, confocal microscopy, flow cytometry, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors, Bcl‐2 gene, Bcl‐x(K) gene, B16F10 cells  相似文献   

6.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

7.
The bio‐green methods of synthesis nanoparticles (NPs) have advantages over chemo‐physical procedures due to cost‐effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO‐NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO‐NPs and synthesised ZnO‐NP characterised using ultraviolet–visible, X‐ray diffraction, Fourier‐transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO‐NPs, cytotoxic and pro‐apoptotic potentials of NPs were also evaluated. The results showed that ZnO‐NPs have a hexagonal shape with 26 nm size. ZnO‐NPs synthesised in RP (RP/ZnO‐NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson‐Metastasis Breast cancer (MDA‐MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO‐NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio‐green synthesised RP/ZnO‐NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio‐green procedure for the synthesis of NPs as an antioxidant and as anti‐cancer agents.Inspec keywords: II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, toxicology, X‐ray diffraction, biochemistry, zinc compounds, nanomedicine, enzymes, biomedical materials, particle size, antibacterial activity, transmission electron microscopy, molecular biophysics, visible spectra, nanofabrication, cellular biophysics, nanoparticles, cancer, field emission scanning electron microscopy, Fourier transform infrared spectra, semiconductor growthOther keywords: bio‐green synthesis ZnO‐NPs, zinc oxide NPs, synthesised ZnO‐NP, field emission scanning electron microscope, transmission electron microscope, antioxidant properties, bio‐green synthesised RP‐ZnO‐NPs, Fourier‐transform infrared spectroscopy, X‐ray diffraction, breast cancer cells MDA‐MB, pro‐apoptotic potentials, cytotoxic effects, catalase enzyme, bio‐green procedure, time 48.0 hour, time 72.0 hour, size 26.0 nm, time 24.0 hour, ZnO  相似文献   

8.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

9.
This paper concentrates on the experimental investigation of the self-reinforced all-polypropylene composites. There exists an optimum processing condition to produce high quality specimens by injection–compression molding. Tensile and 3-point bending properties of the virgin PP materials were nearly unaffected by the introduction of reinforcing knit layer(s) due to very low fibre content of the knitted fabrics used. 3-point bending properties were also unaffected by the surface of indentation-flexure. The applied impact energy was maintained at 5 J for the homo-PP and 27 J for the block-PP materials, respectively, to cause penetration during drop-weight impact tests. It is interestingly noteworthy that the self-reinforced homo-PP composites exhibited superior energy absorption capability when compared with the virgin matrix materials. The corresponding plate bending performances of the self-reinforced homo-PP composites also revealed consistent improvement as compared to their virgin counterparts. On the other hand, although virgin block-PP material exhibited better impact performances than its composite reinforced by the homo-PP knitted fabric, a notably small increase in the reinforcement fibre content revealed considerable improvement in the impact properties comparable to those of the virgin block-PP matrix materials. These self-reinforced homo-PP/block-PP materials have clearly indicated that they have the potential to out-perform the block-PP materials via modification and/or manipulation of the reinforcement knit structural/geometrical parameters and the content of reinforcement fibres. Both static and dynamic impact properties are likely to be affected by the local area properties of the tested face under indentation, and thereby contributing to the improved performances of the composite specimens with the knit face under the impact.  相似文献   

10.
Poly (ɛ‐caprolactone)–chitosan–poly (vinyl alcohol) (PCL: Cs: PVA) nanofibrous blend scaffolds were known as useful materials for skin wound healing and would help the healing process about 50% faster at the final time point. From the previous studies by the authors, PCL: Cs: PVA (in 2: 1: 1.5 mass ratio) nanofibres showed high efficacy in healing on rat models. In this study, the scaffolds were examined in burn and excision wounds healing on dogs as bigger models. The scaffolds were applied on dorsum skin wounds (n  = 5) then macroscopic and microscopic investigations were carried out to measure the wounds areas and to track healing rate, respectively. Macroscopic results showed good aspect healing effect of scaffolds compared with control wounds especially after 21 days post‐operating for both cutting and burn wounds. Pathological studies showed that the healing rates of the wounds covered with PCL: Cs: PVA nanofibrous scaffolds were much rapid compared to untreated wounds in control group. The immunogenicity of the scaffolds in canine model was also investigated. The findings showed that nanofibrous blend scaffolds was not immunogenic in humoural immune responses. All these results indicated that PCL: Cs: PVA nanofibrous web could be considered as promising materials for wounds healings.Inspec keywords: nanofibres, nanomedicine, biomedical materials, polymer fibres, polymer blends, skin, woundsOther keywords: poly(ε‐caprolactone)‐chitosan‐poly (vinyl alcohol) nanofibrous blend scaffolds, skin excisional wounds, burn wounds, canine model, skin wound healing, dorsum skin wounds, macroscopic investigations, microscopic investigations, healing rate, cutting wounds, pathological study, humoural immune responses, nanofibrous web, immunogenicity, time 21 day  相似文献   

11.
A facile and green process to synthesise cuttlebone supported palladium nanoparticles (Pd NPs/cuttlebone) is reported using Conium maculatum leaf extract and in the absence of chemical solvents and hazardous materials. The antioxidant content of the C. maculatum leaf extract played a significant role in converting Pd2+ ions to Pd NPs. Various techniques were used for the characterisation of the Pd NPs/cuttlebone such as field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared and ultraviolet–visible spectroscopy. This Pd NPs/cuttlebone showed excellent catalytic activity in the reduction of 2,4‐dinitrophenylhydrazine to 2,4‐diaminophenylhydrazine by sodium borohydride as the source of hydrogen at ambient condition. The catalyst could be separated and recycled up to five cycles with no loss of its activity.Inspec keywords: catalysis, catalysts, chemical engineering, palladium, nanoparticles, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, X‐ray chemical analysis, sodium compounds, ultraviolet spectroscopy, visible spectroscopyOther keywords: catalytic reduction, 2,4‐dinitrophenylhydrazine, cuttlebone, Conium maculatum leaf extract, green process, palladium nanoparticles, antioxidant content, field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, 2,4‐diaminophenylhydrazine, sodium borohydride  相似文献   

12.
Polymers are widely used for sliding couples against metals and other materials. Polypropylene is a polymer used in variety of applications includes packaging, laboratory equipments, automotive components, etc. Polypropylene is often desirable automotive material due to its low cost, colorability, chemical resistance and UV stability. In addition the range of potential polypropylene uses is nearly unlimited through the use of modifiers, additives and fillers. In the present work, the sliding wear of polypropylene (PP) and carbon nanotube (CNT) blends are evaluated as a function of applied load and composition against a steel counter face in dry condition. The addition of CNT in PP in wear performance is investigated and presented in detail. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces.  相似文献   

13.
In this study, extracellular extract of plant growth promoting bacterium, Nitrobacter sp. is used for the bioconversion of AgNO3 (silver nitrate) into Ag2 O (silver oxide nanoparticles). It is an easy, ecofriendly and single step method for Ag2 O NPs synthesis. The bio‐synthesized nanoparticles were characterized using different techniques. UV‐Vis results showed the maximum absorbance around 450 nm. XRD result shows the particles to have faced centered cubic (fcc) crystalline nature. FTIR analysis reveals the functional groups that are involved in bioconversion such as C–N, N–H and C=O. Energy‐dispersive X‐ray spectroscopy (EDAX) spectrum confirms that the prepared nanoparticle is Ag2 O NPs. Particle size distribution result reveals that the average particle size is around 40 nm. The synthesized Ag2 O NPs found to be almost spherical in shape. Biosynthesized Ag2 O NPs possess good antibacterial activity against selected Gram positive and Gram negative bacterial strains namely Salmonella typhimurium, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae when compared to standard antibiotic. In addition, Ag2 O NPs exhibits excellent free radical scavenging activity with respect to dosage. Thus, this study is a new approach to use soil bacterial extract for the production of Ag2 O NPs for biomedical application.Inspec keywords: nanomedicine, nanoparticles, silver compounds, antibacterial activity, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, particle size, free radicalsOther keywords: free radical scavenging activity, Ag2 O, AgNO3 , Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Gram negative bacterial strains, Gram positive bacterial strains, particle size distribution, energy‐dispersive X‐ray spectroscopy spectrum, functional groups, Fourier transform infrared analysis, faced centred cubic crystalline nature, XRD, UV‐Vis results, bio‐synthesised nanoparticles, silver oxide nanoparticles, silver nitrate bioconversion, plant growth promoting bacterium, extracellular extract, biomedical application, antibacterial potential, antioxidant potential, Ag2 O NPs, extract mediated biosynthesis, Nitrobacter sp  相似文献   

14.
The flame retardant and mechanical properties of polypropylene (PP) composites filled with microencapsulated red phosphorus (MRP) and magnesium hydrate (Mg(OH)2)/aluminum hydrate (Al(OH)3) were measured. It was found that the synergistic effects between the MRP and Mg(OH)2/Al(OH)3 on the flame retardant and tensile properties of the composites were significant. The limit oxygen index and smoke density rank of the composites increased nonlinearly while the horizontal combustibility rate decreased nonlinearly with increasing the MRP weight fraction. The Young modulus and the tensile elongation at break increased while the tensile yield strength and tensile fracture strength decreased slightly with increasing the MRP weight fraction. Both the V-notched Izod and Charpy impact strength increased with increasing the MRP weight fraction. Moreover, the tensile yield strength of the composites estimated using an equation published previously was roughly close to the measured data.  相似文献   

15.
In this study, the adhesive properties of the plasma modified polypropylene (PP) and polyethylene terephthalate (PET) film surfaces have been investigated. Hydrophilicity of these polymer film surfaces was studied by contact angle measurements. The surface energy of the polymer films was calculated from contact angle data using Fowkes method. The chemical composition of the polymer films was analyzed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was used to study the changes in surface feature of the polymer surfaces due to plasma treatment. The adhesion strength of the plasma modified film was studied by T-peel strength test. The results showed a considerable improvement in surface wettability even for short exposure times. The AFM and XPS analyses showed changes in surface topography and formation of polar groups on the plasma modified PP and PET surfaces. These changes enhanced the adhesive properties of polymer film surfaces.  相似文献   

16.
Wurtzite (Wz) and kesterite (Ks) phases of Cu2ZnSnS4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert-dodecanethiol (t-DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20?±?3 nm, width 17?±?2 nm) and sphere shaped NPs (13.4?±?0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks—t-DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm?3) and carrier concentration (2.64?×?1017) compared to kesterite phase of CZTS films.  相似文献   

17.
Lead (Pb) ions are a major concern to the environment and human health as they are contemplated cumulative poisons. In this study, facile synthesis of magnetic iron oxide–tea waste nanocomposite is reported for adsorptive removal of lead ions from aqueous solutions and easy magnetic separation of the adsorbent afterwards. The samples were characterised by scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, and Braunner–Emmet–Teller nitrogen adsorption study. Adsorptive removal of Pb(II) ions from aqueous solution was followed by ultraviolet–visible (UV–Vis) spectrophotometry. About 95% Pb(II) ion removal is achieved with the magnetic tea waste within 10 min. A coefficient of regression R 2  ≃ 0.99 and adsorption density of 18.83 mg g−1 was found when Pb(II) ions were removed from aqueous solution using magnetic tea waste. The removal of Pb(II) ions follows the pseudo‐second‐order rate kinetics. External mass transfer principally regulates the rate‐limiting phenomena of adsorption of Pb(II) ions on iron oxide–tea waste surface. The results strongly imply that magnetic tea waste has promising potential as an economic and excellent adsorbent for the removal of Pb(II) from water.Inspec keywords: visible spectra, scanning electron microscopy, mass transfer, ultraviolet spectra, X‐ray diffraction, nanocomposites, lead, adsorption, magnetic separation, iron compounds, nanofabrication, Fourier transform infrared spectraOther keywords: FeO, Pb, time 10.0 min, X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscopy, adsorbent, magnetic separation, rapid removal, Braunner–Emmet–Teller nitrogen adsorption, iron oxide–tea waste surface, magnetic tea waste, aqueous solution, adsorptive removal, magnetic iron oxide–tea waste nanocomposite, lead(II) ions  相似文献   

18.
Paclitaxel (Taxol®) is one of the most effective anticancer drugs found from nature in recent decades, which can treat various cancers including ovarian, breast, brain, colon and lung cancer, and AIDS-related cancer. Due to its low aqueous solubility, adjuvants such as Cremophor EL, which causes serious side effects, have to be used in its administration. Our aim is to develop an alternative delivery system to achieve better therapeutic effects with minimum side effects. Paclitaxel-loaded nanospheres of biodegradable polymers were prepared by an improved solvent extraction/evaporation technique. Phospholipids, cholesterol and vitamins were used to replace traditional chemical emulsifiers to achieve high encapsulation efficiency (EE) and desired release rate of the drug. Nanospheres prepared under various conditions are characterized by the light scattering for size and size distribution, the scanning electron microscopy (SEM) and the atomic force microscopy (AFM) for surface morphology; differential scanning calorimetry (DSC) for the physical status of the drug within the polymeric matrix; the zeta-potential measurement for the surface charge properties; and X-ray photoelectron spectroscopy (XPS) for the surface chemistry. In-vitro release kinetics were measured by high-performance liquid chromatography (HPLC). Best design was pursued to develop a product for cancer chemotherapy.  相似文献   

19.
Triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs was synthesized by a glycothermal reaction. XRD analysis identified the product as Mn0.2Co0.8Fe2O4 with a high phase purity. Nano-sized particles with an average size of about 6–8 nm were obtained with nearly single crystalline nature with TEM analysis. Superparamagnetic-like behavior of TREG stabilized Mn0.2Co0.8Fe2O4 NPs was observed by VSM. The binding between TREG and Mn0.2Co0.8Fe2O4 NPs was investigated with FT-IR and found to be via O on the TREG and NP surface. TG analysis indicated that the Mn0.2Co0.8Fe2O4 NP content was about 40%, with a TREG-shell content to be around 60%. Overall conductivity of the nanocomposite is in the range of 10?10 to 10?7 S cm?1 with a strong dependence on temperature and frequency, indicating ionic conductivity. The nanocomposite exhibited lower ?’ and ?″ compared to TREG stabilized Mn0.2Co0.8Fe2O4 NPs due to the doping of co-doping of manganese and cobalt.  相似文献   

20.
Major surgery and critical illness produce a potentially life-threatening systemic inflammatory response. The hypothalamic–pituitary–adrenal (HPA) axis is one of the key physiological systems that counterbalances this systemic inflammation through changes in adrenocorticotrophic hormone (ACTH) and cortisol. These hormones normally exhibit highly correlated ultradian pulsatility with an amplitude modulated by circadian processes. However, these dynamics are disrupted by major surgery and critical illness. In this work, we characterize the inflammatory, ACTH and cortisol responses of patients undergoing cardiac surgery and show that the HPA axis response can be classified into one of three phenotypes: single-pulse, two-pulse and multiple-pulse dynamics. We develop a mathematical model of cortisol secretion and metabolism that predicts the physiological mechanisms responsible for these different phenotypes. We show that the effects of inflammatory mediators are important only in the single-pulse pattern in which normal pulsatility is lost—suggesting that this phenotype could be indicative of the greatest inflammatory response. Investigating whether and how these phenotypes are correlated with clinical outcomes will be critical to patient prognosis and designing interventions to improve recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号