首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this present study, a hybrid Chi‐Fe3 O4 was prepared, characterised and evaluated for its antibacterial and antibiofilm potential against Staphylococcus aureus and Staphylococcus marcescens bacterial pathogens. Intense peak around 260 nm in the ultraviolet–visible spectrum specify the formation of magnetite nanoparticles. Spherical‐shaped particles with less agglomeration and particle size distribution of 3.78–46.40 nm were observed using transmission electron microscopy analysis and strong interaction of chitosan with the surface of magnetite nanoparticles was studied using field emission scanning microscopy (FESEM). X‐ray diffraction analysis exhibited the polycrystalline and spinel structure configuration of the nanocomposite. Presence of Fe and O, C and Cl elements were confirmed using energy dispersive X‐ray microanalysis. Fourier transform infrared spectroscopic analysis showed the reduction and formation of Chi‐Fe3 O4 nanocomposite. The antibacterial activity by deformation of the bacterial cell walls on treatment with Chi‐Fe3 O4 nanocomposite and its interaction was visualised using FESEM and the antibiofilm activity was determined using antibiofilm assay. In conclusion, this present study shows the green synthesis of Chi‐Fe3 O4 nanocomposite and evaluation of its antibacterial and antibiofilm potential, proving its significance in medical and biological applicationsInspec keywords: visible spectra, particle size, magnetic particles, nanocomposites, nanoparticles, X‐ray diffraction, nanofabrication, transmission electron microscopy, X‐ray chemical analysis, nanomagnetics, microorganisms, antibacterial activity, iron compounds, ultraviolet spectra, biomedical materials, field emission scanning electron microscopy, Fourier transform infrared spectra, filled polymers, crystal growth from solution, polymer structureOther keywords: potential antibacterial material, antibiofilm potential, magnetite nanoparticles, solvothermal‐assisted green synthesis, hybrid Chi‐Fe3 O4 nanocomposites, staphylococcus aureus, staphylococcus marcescens, bacterial pathogens, ultraviolet–visible spectrum, spherical‐shaped particles, particle size, transmission electron microscopy, FESEM, field emission scanning electron microscopy, X‐ray diffraction, spinel structure, polycrystalline structure, energy dispersive X‐ray microanalysis, Fourier transform infrared spectroscopic analysis, deformation, bacterial cell walls, Fe3 O4   相似文献   

2.
Biosynthesis of nanoparticles through plant extracts is gaining attention due to the toxic free synthesis process. The environmental engineering applications of many metal oxide nanoparticles have been reported. In this study, iron oxide nanoparticles (Fe2 O3 ‐Nps) were synthesised using a simple biosynthetic method using a leaf extract of a mangrove plant Rhizophora mucronata through reduction of 0.01 M ferric chloride. Fe2 O3 ‐Np synthesis was revealed by a greenish colour formation with a surface plasmon band observed close to 368 nm. The stable Fe2 O3 ‐Np possessed excitation and emission wavelength of 368.0 and 370.5 nm, respectively. The Fourier‐transform infrared spectral analysis revealed the changes in functional groups during formation of Fe2 O3 ‐Np. Agglomerations of nanoparticles were observed during scanning electron microscopic analysis and energy‐dispersive X‐ray spectroscopic analysis confirmed the ferric oxide nature. The average particle size of Fe2 O3 ‐Np based on dynamic light scattering was 65 nm. Based on transmission electron microscopic analysis, particles were spherical in shape and the crystalline size was confirmed by selected area electron diffraction pattern analysis. The synthesised Fe2 O3 ‐Np exhibited a good photodegradation efficiency with a reduction of 83 and 95% of phenol red and crystal violet under irradiation of sunlight and florescent light, respectively. This report is a facile synthesis method for Fe2 O3 ‐Np with high photodegradation efficiency.Inspec keywords: photochemistry, dyes, nanofabrication, transmission electron microscopy, scanning electron microscopy, nanoparticles, iron compounds, X‐ray diffraction, catalysts, catalysis, particle size, X‐ray chemical analysis, electron diffraction, Fourier transform infrared spectra, surface plasmonsOther keywords: energy‐dispersive X‐ray spectroscopic analysis, ferric oxide nature, transmission electron microscopic analysis, selected area electron diffraction pattern analysis, iron oxide nanoparticles, plant extracts, toxic free synthesis process, metal oxide nanoparticles, metal nanoparticles, nanofiltration, nanobiocides, Rhizophora mucronata Lam, crystalline size, phenol red, crystal violet, sunlight irradiation, florescent light, scanning electron microscopic analysis, Fourier‐transform infrared spectral analysis, surface plasmon, ferric chloride, leaf extract, nanocatalysts, nanoadsorbents, photocatalytic degradation, synthetic dyes, mangrove plant, water remediation, wastewater pollutant, wavelength 370.5 nm, wavelength 368.0 nm, Fe2 O3   相似文献   

3.
The present study demonstrated the preparation of three different acid‐functionalised magnetic nanoparticles (MNPs) and evaluation for their catalytic efficacy in hydrolysis of cellobiose. Initially, iron oxide (Fe3 O4)MNPs were synthesised, which further modified by applying silica coating (Fe3 O4 ‐MNPs@Si) and functionalised with alkylsulfonic acid (Fe3 O4 ‐MNPs@Si@AS), butylcarboxylic acid (Fe3 O4 ‐MNPs@Si@BCOOH) and sulphonic acid (Fe3 O4 ‐MNPs@Si@SO3 H) groups. The Fourier transform infrared analysis confirmed the presence of above‐mentioned acid functional groups on MNPs. Similarly, X‐ray diffraction pattern and energy dispersive X‐ray spectroscopy analysis confirmed the crystalline nature and elemental composition of MNPs, respectively. TEM micrographs showed the synthesis of spherical and polydispersed nanoparticles having diameter size in the range of 20–80 nm. Cellobiose hydrolysis was used as a model reaction to evaluate the catalytic efficacy of acid‐functionalised nanoparticles. A maximum 74.8% cellobiose conversion was reported in case of Fe3 O4 ‐MNPs@Si@SO3 H in first cycle of hydrolysis. Moreover, thus used acid‐functionalised MNPs were magnetically separated and reused. In second cycle of hydrolysis, Fe3 O4 ‐MNPs@Si@SO3 H showed 49.8% cellobiose conversion followed by Fe3 O4 ‐MNPs@Si@AS (45%) and Fe3 O4 ‐MNPs@Si@BCOOH (18.3%). However, similar pattern was reported in case of third cycle of hydrolysis. The proposed approach is considered as rapid and convenient. Moreover, reuse of acid‐functionalised MNPs makes the process economically viable.Inspec keywords: scanning electron microscopy, catalysis, magnetic separation, magnetic particles, silicon compounds, iron compounds, nanomagnetics, coatings, X‐ray chemical analysis, nanoparticles, X‐ray diffraction, nanofabrication, Fourier transform infrared spectra, organic compounds, nanocompositesOther keywords: catalytic efficacy, alkylsulfonic acid, butylcarboxylic acid, energy dispersive X‐ray spectroscopy analysis, spherical polydispersed nanoparticles, cellobiose hydrolysis, acid‐functionalised MNPs, acid functional groups, cellobiose conversion, acid‐functionalised magnetic nanoparticle, silica coating, sulphonic acid, Fourier transform infrared analysis, SEM micrograph, X‐ray diffraction pattern, size 20.0 nm to 80.0 nm, Fe3 O4 , Si, SiO2   相似文献   

4.
This is the first study to report the green synthesis of Lobelia trigona Roxb‐ mediated silver nanoparticles (LTAgNPs). The optical and structural properties of the synthesised LTAgNPs were analysed using ultraviolet–visible spectroscopy, scanning electron microscopy, Fourier transform infrared, dynamic light scattering and energy dispersive X‐ray. LTAgNps were evaluated for their anti‐bacterial and anti‐fungal properties against 18 pathogens and exhibited significant inhibition against all the strains tested. LTAgNPs had potential scavenging effects on the DPPH, OH, O2 •− free radical scavenging assays and reducing power assay. LTAgNps possess strong anti‐cancer activity against five human cancer cell lines (A549, MCF‐7, MDA‐MB‐231, HeLa and KB) in a dose‐dependent manner. The antiproliferative, anti‐inflammatory and genotoxicity effects of LTAgNPs were further confirmed by the lactate dehydrogenase release assay, nitric oxide inhibitory assay and comet assay. Furthermore, the incision, excision and burn wound‐healing activity of formulated LTAgNPs ointment was assessed in rats. All the wounds had significant healing in groups treated with LTAgNPs ointment compared to the groups treated with the commonly prescribed ointment (SilverexTM). This study shows and suggests that the previously unreported LTAgNPs could be used as a nanomedicine with significant biological applications.Inspec keywords: molecular biophysics, biomedical materials, scanning electron microscopy, biochemistry, cancer, microorganisms, silver, cellular biophysics, nanofabrication, wounds, nanomedicine, ultraviolet spectra, toxicology, antibacterial activity, light scattering, nanoparticles, enzymes, visible spectra, Fourier transform infrared spectraOther keywords: Lobelia trigona Roxb‐based nanomedicine, biological applications, Lobelia trigona Roxb‐mediated silver nanoparticles, optical properties, structural properties, ultraviolet‐visible spectroscopy, dynamic light scattering, antibacterial properties, antifungal properties, scavenging effects, free radical scavenging, power assay, anticancer activity, antiinflammatory effects, genotoxicity effects, lactate dehydrogenase release assay, nitric oxide inhibitory assay, excision, burn wound‐healing activity, formulated LTAgNPs ointment, in vivo approach, in vitro approach, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, pathogens, strains, A549 human cancer cell lines, MCF‐7 human cancer cell lines, MDA‐MB‐231 human cancer cell lines, HeLa human cancer cell lines, antiproliferative effects, comet assay, Ag  相似文献   

5.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

6.
Drug delivery is one of the most important challenges in the domain of health. Non‐toxic and biocompatible carriers are provided by human serum albumin nano‐capsule (HSA/NC) for drug delivery applications. In this study, HSA, with high loadings of drug‐modified cobalt ferrite (CoFe2 O4) magnetic nanoparticle (CoFe2 O4 /MNPs) was fabricated for epirubicin anticancer drug delivery. In the initial step, CoFe2 O4 /MNPs was synthesised via co‐precipitation technique and characterised by X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy and map analysis. Furthermore, CoFe2 O4 /MNPs and epirubicin were loaded into HSA/NC and utilised as a novel system against breast cancer cell line (MCF‐7). IC50 for free epirubicin, unloaded CoFe2 O4 /MNPs/HSA/NC, CoFe2 O4 /MNPs and epirubicin‐loaded CoFe2 O4 /MNPs/HSA/NC were 7.7, 2400, 840 and 430 μg/ml, respectively. The results obtained revealed high cytotoxicity effect of epirubicin‐loaded CoFe2 O4 /MNPs on breast cancer cell line.Inspec keywords: drug delivery systems, biomedical materials, nanoparticles, cobalt compounds, ferrites, nanomedicine, proteins, molecular biophysics, drugs, magnetic particles, nanomagnetics, nanofabrication, precipitation (physical chemistry), X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, cancer, cellular biophysics, toxicology, magnetic hysteresisOther keywords: HSA, high‐efficiency carrier, epirubicin anticancer drug delivery, human serum albumin nanocapsule, drug‐modified cobalt ferrite magnetic nanoparticle, coprecipitation technique, X‐ray powder diffraction, vibrating sample magnetometry, energy dispersive X‐ray analysis, scanning electron microscopy, map analysis, breast cancer cell line, cytotoxicity effect, CoFe2 O4   相似文献   

7.
In this work, an Fe3 O4 /HZSM‐5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM‐5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT‐IR), X‐ray diffraction, field‐emission scanning electron microscopy (FESEM), energy‐dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3 O4 /HZSM‐5 surface was >70 nm. The Ag/Fe3 O4 /HZSM‐5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4‐nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.Inspec keywords: silver, X‐ray chemical analysis, X‐ray diffraction, nanocomposites, reduction (chemical), nanofabrication, nanoparticles, transmission electron microscopy, catalysts, Fourier transform infrared spectra, iron compounds, field emission scanning electron microscopy, zeolites, magnetometry, particle sizeOther keywords: Ag‐Fe3 O4 , temperature 293 K to 298 K, green synthesis, catalyst material, 4‐nitrophenol reduction, methyl orange reduction, particle size, vibrating sample magnetometry, Brunauer–Emmett–Teller method, field‐emission scanning electron microscopy, X‐ray diffraction, FT‐IR spectroscopy, silver nanoparticles, Juglans regia L. leaf extract, organic pollutant reduction, magnetically recoverable nanocomposites, energy‐dispersive spectroscopy  相似文献   

8.
Due to the strong effect of nanoparticles'' size and surface properties on cellular uptake and bio‐distribution, the selection of coating material for magnetic core–shell nanoparticles (CSNPs) is very important. In this study, the effects of four different biocompatible coating materials on the physical properties of Fe3 O4 (magnetite) nanoparticles (NPs) for different biomedical applications are investigated and compared. In this regard, magnetite NPs are prepared by a simple co‐precipitation method. Then, CSNPs including Fe3 O4 as a core and carbon, dextran, ZnO (zincite) and SiO2 (silica) as different shells are synthesised using simple one‐ or two‐step methods. A comprehensive study is carried out on the prepared samples using X‐ray diffraction, vibrating sample magnetometry, transmission electron microscopy and Fourier transform infrared spectroscopy analyses. According to the authors'' findings, it is suggested that carbon‐ and dextran‐coated magnetite NPs with high M s have great potential in the application of magnetic resonance imaging contrast agents. Moreover, silica‐coated magnetite NPs with high coercivity are potentially suitable candidates for hyperthermia and ZnO‐coated Fe3 O4 is potentially suitable for photothermal therapy.Inspec keywords: iron compounds, carbon, silicon compounds, zinc compounds, nanomedicine, biomedical materials, nanofabrication, nanoparticles, magnetic particles, coatings, X‐ray diffraction, magnetometry, transmission electron microscopy, Fourier transform spectra, infrared spectra, biomedical MRI, hyperthermia, radiation therapyOther keywords: biomedical applications, magnetic core‐shell nanoparticles, CSNP, cellular uptake, biodistribution, coating material, biocompatible coating materials, co‐precipitation, dextran, zincite, silica, X‐ray diffraction, vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, magnetic resonance imaging contrast agents, hyperthermia, photothermal therapy, SiO2 ‐Fe3 O4 , ZnO‐Fe3 O4   相似文献   

9.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   

10.
In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB‐231) and (MCF‐7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB‐231 and MCF‐7 after being examined with MTT (3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB‐231 cell line than in MCF‐7. Therefore, further cytotoxicity tests were performed on MDA MB‐231 cell line.Inspec keywords: sol‐gel processing, nanoparticles, nanofabrication, magnesium compounds, zinc compounds, toxicology, biological organs, cancer, cellular biophysics, nanomedicine, calcination, differential thermal analysis, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, particle size, organic compoundsOther keywords: sol‐gel method, cytotoxic effects, breast cancer cell line, MDA MB‐231 in vitro, nanocrystalline magnesium zinc ferrite nanoparticles, copper nitrate, ferric nitrate, raw materials, calcined samples, differential thermal analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, average particle size, cytotoxicity testing, human breast cancer cells, mild toxic effect, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyltetrazolium bromide) assay, cell viability, MCF‐7, MDA MB‐231 cell line, size 17 nm to 41 nm  相似文献   

11.
The aim of this study was to green synthesised silver nanoparticles (AgNPs) using Centella asiatica leaf extract and investigate the cytotoxic and apoptosis‐inducing effects of these nanoparticles in MCF‐7 breast cancer cell line. The characteristics and morphology of the green synthesised AgNPs were evaluated using transmission electron microscopy, scanning electron microscopy, UV–visible spectroscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The MTT assay was used to investigate the anti‐proliferative activity of biosynthesised nanoparticles in MCF‐7 cells. Apoptosis test was performed using flow cytometry and expression of caspase 3 and 9 genes. The spherical AgNPs with an average size of 19.17 nm were synthesised. The results showed that biosynthesised AgNPs exhibited cytotoxicity, anti‐cancer, apoptosis induction, and increased expression of genes encoding for caspases 3 and 9 in MCF‐7 cancer cells in a concentration‐ and time‐dependent manner. It seems that green synthesised AgNPs have potential uses for pharmaceutical industries.Inspec keywords: ultraviolet spectra, transmission electron microscopy, cellular biophysics, infrared spectra, visible spectra, nanofabrication, cancer, toxicology, nanomedicine, nanoparticles, biomedical materials, scanning electron microscopy, silver, Fourier transform spectra, X‐ray diffraction, genetics, enzymes, botany, biochemistryOther keywords: spherical AgNPs, biosynthesised AgNPs, anti‐cancer, apoptosis induction, green synthesised AgNPs, MCF‐7 breast cancer cell line, green synthesised silver nanoparticles, Ag, caspase gene expression, flow cytometry, anti‐proliferative activity, MTT assay, pharmaceutical industries, cytotoxicity, UV–visible spectroscopy, nanoparticle morphology, scanning electron microscopy, Centella asiatica leaf extract, biosynthesised nanoparticles, Fourier‐transform infrared spectroscopy, transmission electron microscopy  相似文献   

12.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

13.
Here, the authors report a rapid, simple, and eco‐friendly process for synthesis of Bi2 O3 nano‐needles. Dioscorea alata tuber extract was used as both reducing and capping agent for the first time. These nanoparticles were characterised by X‐ray diffraction, field emission scanning electron microscope, and Fourier transform infrared (FTIR) spectrometry, the nano‐structured Bi2 O3 needles have an average diameter of 158 nm with the lengths in the range of 1–3 μm. CLSI M27‐A2 standard was followed for evaluation of anti‐fungal activity. Bi2 O3 nano‐needles show remarkable activity against Candida albicans. It exhibits four time greater activity than bulk Bi2 O3 powder and two time greater activity than itraconazole, which makes it a potent anti‐fungal drug.Inspec keywords: bismuth compounds, nanoparticles, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectra, drugs, nanomedicine, biomedical materials, nanofabricationOther keywords: nanoneedles, antifungal activity, nanoparticles, X‐ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectrometry, CLSI M27‐A2 standard, Candida albicans, itraconazole, antifungal drug, Bi2 O3   相似文献   

14.
In this work, the authors investigated the apoptotic activities of Fe3 O4 /Ag nanocomposite biosynthesised by Spirulina platensis extract against MCF‐7 (human breast cancer cells). The physico‐chemical properties of prepared Fe3 O4 /Ag nanocomposite were studied by different spectroscopic methods. To evaluate the in vitro cytotoxic effect, MCF‐7 cells were treated with different concentrations of Fe3 O4 /Ag nanocomposite and examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. Moreover, apoptotic effects were also studied by Hoechst 33258 staining, caspase 3 activation assays, and annexin V‐fluorescein isothiocyanate (FITC) and propidium iodide staining. Microscopic observations of Fe3 O4 /Ag nanocomposites indicated approximately spherical shape and small particles in the size range of about 30–50 nm. The MTT assay result revealed that the Fe3 O4 /Ag nanocomposite causes a dose‐dependent cell proliferation reduction in MCF‐7 cells (IC50  = 135 μg/ml). Regarding to the Annexin V/PI staining result, the increase percentage of apoptotic cells (28.09%) was detected as compared to untreated cells. According to the caspase assay, Fe3 O4 /Ag nanocomposite enhances caspase 3 level. Furthermore, in vitro anti‐cancer activity of the nanocomposite was performed by Hoechst 33258 staining method. The proposed data suggest that Fe3 O4 /Ag nanocomposite may be an effective agent for the inhibition of breast cancer cells at in vitro level.Inspec keywords: nanomedicine, nanocomposites, toxicology, cancer, drug delivery systems, nanofabrication, cellular biophysics, nanoparticlesOther keywords: MCF‐7 cells, 5‐diphenyl‐tetrazolium, apoptotic effects, propidium iodide staining, dose‐dependent cell proliferation reduction, apoptotic cells, untreated cells, nanocomposite, Hoechst 33258 staining method, human breast cancer cells, physico‐chemical properties, spectroscopic methods, in vitro cytotoxic effect, in vitro anticancer activity, biosynthesis, caspase 3 activation assays, annexin V‐fluorescein isothiocyanate, FITC, Fe3 O4 ‐Ag  相似文献   

15.
Candida albicans (C. albicans) infection shows a growing burden on human health, and it has become challenging to search for treatment. Therefore, this work focused on the antifungal activity, and cytotoxic effect of biosynthesised nanostructures on human ovarian tetracarcinoma cells PA1 and their corresponding mechanism of cell death. Herein, the authors fabricated advanced biosynthesis of uncoated α‐Fe2 O3 and coated α‐Fe2 O3 nanostructures by using the carbohydrate of Spirulina platensis. The physicochemical features of nanostructures were characterised by UV–visible, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The antifungal activity of these nanostructures against C. albicans was studied by the broth dilution method, and examined by 2′, 7′‐dichlorofluorescein diacetate staining. However, their cytotoxic effects against PA1 cell lines were evaluated by MTT and comet assays. Results indicated characteristic rod‐shaped nanostructures, and increasing the average size of α‐Fe2 O3 @ZnO nanocomposite (105.2 nm × 29.1 nm) to five times as compared to α‐Fe2 O3 nanoparticles (20.73nm × 5.25 nm). The surface coating of α‐Fe2 O3 by ZnO has increased its antifungal efficiency against C. albicans. Moreover, the MTT results revealed that α‐Fe2 O3 @ZnO nanocomposite reduces PA1 cell proliferation due to DNA fragmentation (IC50 18.5 μg/ml). Continual advances of green nanotechnology and promising findings of this study are in favour of using the construction of rod‐shaped nanostructures for therapeutic applications.Inspec keywords: nanocomposites, toxicology, nanofabrication, cellular biophysics, X‐ray diffraction, iron compounds, biochemistry, cancer, antibacterial activity, transmission electron microscopy, biomedical materials, wide band gap semiconductors, DNA, II‐VI semiconductors, visible spectra, molecular biophysics, ultraviolet spectra, nanomedicine, zinc compounds, nanoparticles, microorganisms, Fourier transform infrared spectraOther keywords: Spirulina platensis, antifungal activity, α‐Fe2 O3 nanoparticles, antiovarian cancer properties, Candida albicans infection, cytotoxic effect, biosynthesised nanostructures, human ovarian tetracarcinoma cell PA1, cell death, uncoated α‐Fe2 O3 , coated α‐Fe2 O3 nanostructures, α‐Fe2 O3 ‐ZnO nanocomposite, carbohydrate, physicochemical features, UV‐visible spectroscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, broth dilution method, 2′, 7′‐dichlorofluorescein diacetate staining, PA1 cell lines, comet assays, MTT assays, rod‐shaped nanostructures, surface coating, PA1 cell proliferation, DNA fragmentation, green nanotechnology, Fe2 O3 ‐ZnO, Fe2 O3   相似文献   

16.
The present study reports an eco‐friendly and rapid method for the synthesis of core–shell nanoclusters using the modified reverse micelle method. It is a green synthetic method which uses Sesbania grandiflora Linn extract which acts as a reducing and capping agent. It is observed that this method is very fast and convenient and the nanoclusters are formed with 5–10 min of the reaction time without using harsh conditions. The core–shell nanoclusters so prepared were characterised using UV–Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy. Further, their effective antibacterial activity towards the gram‐positive bacteria Staphylococcus aureus was found to be due to their smaller particle size.Inspec keywords: iron compounds, copper compounds, nanoparticles, particle size, nanofabrication, nanomedicine, biomedical materials, core‐shell nanostructures, antibacterial activity, ultraviolet spectra, visible spectra, microorganisms, reduction (chemical), scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectraOther keywords: biosynthesis, γ‐Fe2 O3 ‐CuO core‐shell nanoclusters, aqueous extract, Sesbania grandiflora Linn fresh leaves, antimicrobial activity, Staphylococcus aureus strains, eco‐friendly method, modified reverse micelle method, green synthetic method, reducing agent, capping agent, UV‐visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, antibacterial activity, gram‐positive bacteria Staphylococcus aureus, particle size, time 5 min to 10 min, Fe2 O3 ‐CuO  相似文献   

17.
This study aimed to develop sorafenib loaded magnetic microspheres for the treatment of hepatocellular carcinoma. To achieve this goal, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised and encapsulated in alginate microspheres together with an antineoplastic agent, sorafenib. In the study, firstly SPIONs were synthesised and characterised by dynamic light scattering, energy‐dispersive X‐ray spectroscopy, and scanning electron microscopy. Then, alginate‐SPIONs microspheres were developed, and further characterised by electron spin resonance spectrometer and vibrating sample magnetometer. Besides the magnetic properties of SPIONs, alginate microspheres with SPIONs were also found to have magnetic properties. The potential use of microspheres in hyperthermia treatment was then investigated and an increase of about 4°C in the environment was found out. Drug release studies and cytotoxicity tests were performed after sorafenib was encapsulated into the magnetic microspheres. According to release studies, sorafenib has been released from microspheres for 8 h. Cytotoxicity tests showed that alginate‐SPION‐sorafenib microspheres were highly effective against cancerous cells and promising for cancer therapy.Inspec keywords: drug delivery systems, drugs, nanofabrication, magnetic particles, iron compounds, scanning electron microscopy, hyperthermia, biomedical materials, encapsulation, nanoparticles, light scattering, nanomagnetics, cellular biophysics, toxicology, cancer, nanomedicine, superparamagnetism, nanocomposites, magnetometry, paramagnetic resonance, X‐ray chemical analysisOther keywords: sorafenib loaded alginate microspheres, hepatocellular carcinoma treatment, sorafenib loaded magnetic microspheres, superparamagnetic iron oxide nanoparticles, dynamic light scattering, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, electron spin resonance spectrometer, vibrating sample magnetometer, hyperthermia treatment, drug release, alginate‐SPION‐sorafenib microspheres, antineoplastic agent, cytotoxicity tests, cancerous cells, time 8.0 hour, Fe3 O4   相似文献   

18.
Montmorillonite (MMT) clay modified with lanthanum (La) ions and Fe3 O4 nanoparticles was proposed for the effective removal of phosphate ions from aqueous solution. Characterisation of the adsorbent using FTIR, SEM, XRD, XPS, XRF, BET and VSM techniques were carried out. The effects of initial phosphate concentration, contact time, dosage and pH on the phosphorus adsorption were investigated. La‐MMT/Fe3 O4 exhibited an excellent adsorption capacity of up to 14.35 mg/g, with 97.8% removal within 60 min. Langmuir isotherm model fits well with the equilibrium isotherm data, with a maximum adsorption capacity of 15.53 mg/g at room temperature. The kinetic study was well fitted with pseudo‐second‐order kinetics, and the adsorption rate was mainly controlled by liquid‐film diffusion. The manufactured adsorbent was effectively regenerated using 0.1 M NaOH solutions, with 90.18% adsorption efficiency remaining after six adsorption/desorption cycles. These results demonstrate that La‐MMT/Fe3 O4 provides an example of regenerable high‐performance adsorbents for removal of PO4 3− from wastewater.Inspec keywords: wastewater treatment, desorption, phosphorus, pH, recycling, adsorption, X‐ray diffraction, iron compounds, nanoparticles, X‐ray photoelectron spectra, clay, scanning electron microscopy, reaction kinetics theory, X‐ray fluorescence analysis, chemical engineering, chemical equilibrium, Fourier transform infrared spectra, sodium compounds, lanthanum, liquid films, diffusionOther keywords: maximum adsorption capacity, high‐performance adsorbents, recyclable adsorbents, lanthanum‐modified montmorillonite, montmorillonite clay, Langmuir isotherm model, phosphate removal, aqueous solution, FTIR spectroscopy, SEM, XRD, XPS, XRF, BET, VSM techniques, pH value, equilibrium isotherm data, pseudo second‐order kinetics, liquid‐film diffusion, adsorbent regeneration, adsorption‐desorption cycles, wastewater treatment, temperature 293.0 K to 298.0 K, time 60.0 min, NaOH, La, P  相似文献   

19.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

20.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号