首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal–curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC. Then, we evaluated the combination of PA-C delivery into the intrathecal space in a rat model of contusive SCI with stem cell transplantation. While we failed to observe significant improvements in locomotor function (BBB scale) in treated animals, histological analysis revealed that PA-C-treated or PA-C and iPSC-NSC + MSC-treated animals displayed significantly smaller scars, while PA-C and iPSC-NSC + MSC treatment induced the preservation of β-III Tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motoneurons and myelinated tracts, while PA-C treatment polarized microglia into an anti-inflammatory phenotype. Overall, the combination of stem cell transplantation and PA-C treatment confers higher neuroprotective effects compared to individual treatments.  相似文献   

2.
Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood–brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.  相似文献   

3.
Mesenchymal stromal cells (MSC) display several mechanisms of action that may be harnessed for therapeutic purposes. One of their most attractive features is their immunomodulatory activity that has been extensively characterized both in vitro and in vivo. While this activity has proven to be very efficient, it is transient. We aimed to enhance it by transforming MSC to overexpress a first apoptosis signal (Fas) ligand (FasL). In this study, our goal was to induce FasL overexpression through adenoviral transduction in MSC to improve their immunomodulatory activity. We characterized the impact of FasL overexpression on the morphology, proliferation, viability, phenotype, multilineage differentiation potential and immunomodulation of MSC. Moreover, we determined their suppressive properties in mixed reactions with A20 cells, as well as with stimulated splenocytes. Our findings demonstrate that FasL-overexpressing MSC exhibit improved immunosuppressive properties, while maintaining their MSC-characteristic features. In conclusion, we establish, in a proof-of-concept set-up, that FasL-overexpressing MSC represent good candidates for therapeutic intervention targeted at autoimmune disorders.  相似文献   

4.
Oxidative stress and inflammation play major roles in the pathogenesis of coronary heart disease including myocardial infarction (MI). The pathological progression following MI is very complex and involves a number of cell populations including cells localized within the heart, as well as cells recruited from the circulation and other tissues that participate in inflammatory and reparative processes. These cells, with their secretory factors, have pleiotropic effects that depend on the stage of inflammation and regeneration. Excessive inflammation leads to enlargement of the infarction site, pathological remodeling and eventually, heart dysfunction. Stem cell therapy represents a unique and innovative approach to ameliorate oxidative stress and inflammation caused by ischemic heart disease. Consequently, it is crucial to understand the crosstalk between stem cells and other cells involved in post-MI cardiac tissue repair, especially immune cells, in order to harness the beneficial effects of the immune response following MI and further improve stem cell-mediated cardiac regeneration. This paper reviews the recent findings on the role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair following ischemic heart disease, particularly acute MI and focuses specifically on mesenchymal, muscle and blood-vessel-derived stem cells due to their antioxidant and immunomodulatory properties.  相似文献   

5.
The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.  相似文献   

6.
After myocardial infarction (MI), a strong inflammatory response takes place in the heart to remove the dead tissue resulting from ischemic injury. A growing body of evidence suggests that timely resolution of this inflammatory process may aid in the prevention of adverse cardiac remodeling and heart failure post-MI. The present challenge is to find a way to stimulate this process without interfering with the reparative role of the immune system. Extracellular vesicles (EVs) are natural membrane particles that are released by cells and carry different macromolecules, including proteins and non-coding RNAs. In recent years, EVs derived from various stem and progenitor cells have been demonstrated to possess regenerative properties. They can provide cardioprotection via several mechanisms of action, including immunomodulation. In this review, we summarize the role of the innate immune system in post-MI healing. We then discuss the mechanisms by which EVs modulate cardiac inflammation in preclinical models of myocardial injury through regulation of monocyte influx and macrophage function. Finally, we provide suggestions for further optimization of EV-based therapy to improve its potential for the treatment of MI.  相似文献   

7.
Severe psoriasis, a chronic inflammatory skin disease is increasingly being effectively managed by targeted immunotherapy but long-term immunotherapy poses health risk and loss of response. Therefore, there is a need for alternative therapy strategies. Mesenchymal stem/stromal cell (MSC) exosomes are widely known for their potent immunomodulatory properties. Here we investigated if topically applied MSC exosomes could alleviate psoriasis-associated inflammation. Topically applied fluorescent exosomes on human skin explants were confined primarily to the stratum corneum with <1% input fluorescence exiting the explant over a 24-h period. Nevertheless, topically applied MSC exosomes in a mouse model of imiquimod (IMQ) psoriasis significantly reduced IL-17 and terminal complement activation complex C5b-9 in the mouse skin. MSC exosomes were previously shown to inhibit complement activation, specifically C5b-9 complex formation through CD59. Infiltration of neutrophils into the stratum corneum is characteristic of psoriasis and neutrophils are a major cellular source of IL-17 in psoriasis through the release of neutrophil extracellular traps (NETs). We propose that topically applied MSC exosomes inhibit complement activation in the stratum corneum and this alleviates IL-17 release by NETS from neutrophils that accumulate in and beneath the stratum corneum.  相似文献   

8.
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.  相似文献   

9.
Allogeneic hematopoietic cell transplantation (allo-HCT) has the potential to cure malignant and non-malignant hematological disorders, but because of the serious side effects of this intervention its applications are limited to a restricted number of diseases. Graft-versus-host disease (GvHD) is the most frequent complication and the leading cause of mortality and morbidity following allo-HCT. It results from the attack of the transplanted T cells from the graft against the cells of the recipient. There is no clear treatment for this severe complication. Due to their immunomodulatory properties, mesenchymal stromal cells (MSC) have been proposed to treat GvHD, but the results did not meet expectations. We have previously showed that the immunomodulatory effect of the MSC was significantly enhanced through adenoviral-mediated overexpression of FasL. In this study, we have tested the properties of FasL-overexpressing MSC in vivo, in a mouse model for acute GvHD. We found that treatment with FasL-overexpressing MSC delayed the onset of the disease and increased survival of the mice.  相似文献   

10.
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.  相似文献   

11.
Mesenchymal stem cells (MSC) are known for their vascular regeneration capacity by neoangiogenesis. Even though, several delivery approaches exist, particularly in the case of intravascular delivery, only limited number of cells reach the targeted tissue and are not able to remain on site. Applicated cells exhibit poor survival accompanied with a loss of functionality. Moreover, cell application techniques lead to cell death and impede the overall MSC function and survival. 3D cell spheroids mimic the physiological microenvironment, thus, overcoming these limitations. Therefore, in this study we aimed to evaluate and assess the feasibility of 3D MSCs spheroids for endovascular application, for treatment of ischemic peripheral vascular pathologies. Multicellular 3D MSC spheroids were generated at different cell seeding densities, labelled with ultra-small particles of iron oxide (USPIO) and investigated in vitro in terms of morphology, size distribution, mechanical stability as well as ex vivo with magnetic resonance imaging (MRI) to assess their trackability and distribution. Generated 3D spheroids were stable, viable, maintained stem cell phenotype and were easily trackable and visualized via MRI. MSC 3D spheroids are suitable candidates for endovascular delivery approaches in the context of ischemic peripheral vascular pathologies.  相似文献   

12.
To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.  相似文献   

13.
Due to their ease of isolation and their properties, mesenchymal stem cells (MSCs) have been widely investigated. MSCs have been proved capable of migration towards areas of inflammation, including tumors. Therefore, they have been suggested as vectors to carry therapies, specifically to neoplasias. As most of the individuals joining clinical trials that use MSCs for cancer and other pathologies are carefully recruited and do not suffer from other diseases, here we decided to study the safety and application of iv-injected MSCs in animals simultaneously induced with different inflammatory pathologies (diabetes, wound healing and tumors). We studied this by in vitro and in vivo approaches using different gene reporters (GFP, hNIS, and f-Luc) and non-invasive techniques (PET, BLI, or fluorescence). Our results found that MSCs reached different organs depending on the previously induced pathology. Moreover, we evaluated the property of MSCs to target tumors as vectors to deliver adenoviruses, including the interaction between tumor microenvironment and MSCs on their arrival. Mechanisms such as transdifferentiation, MSC fusion with cells, or paracrine processes after MSCs homing were studied, increasing the knowledge and safety of this new therapy for cancer.  相似文献   

14.
Mesenchymal stem cell (MSC) therapy has been investigated intensively for many years. However, there is a potential risk related to MSC applications in various cell niches. Methods: The safety of intravitreal MSC application and the efficacy of MSC-derived conditioned medium (MDCM) were evaluated in the normal eye and the diseased eye, respectively. For safety evaluation, the fundus morphology, visual function, retinal function, and histological changes of the retina were examined. For efficacy evaluation, the MDCM was intravitreally administrated in a rodent model of anterior ischemic optic neuropathy (rAION). The visual function, retinal ganglion cell (RGC) density, and neuroinflammation were evaluated at day 28 post-optic nerve (ON) infarct. Results: The fundus imaging showed that MSC transplantation induced retinal distortion and venous congestion. The visual function, retinal function, and RGC density were significantly decreased in MSC-treated eyes. MSC transplantation induced astrogliosis, microgliosis, and macrophage infiltration in the retina due to an increase in the HLA-DR-positive MSC proportion in vitreous. Treatment with the MDCM preserved the visual function and RGC density in rAION via inhibition of macrophage infiltration and RGC apoptosis. Conclusions: The vitreous induced the HLA-DR expression in the MSCs to cause retinal inflammation and retina injury. However, the MDCM provided the neuroprotective effects in rAION.  相似文献   

15.
Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.  相似文献   

16.
M2 macrophages in the tumor microenvironment are important drivers of cancer metastasis. Exosomes play a critical role in the crosstalk between different cells by delivering microRNAs or other cargos. Whether exosomes derived from pro-tumorigenic M2 macrophages (M2-Exos) could modulate the metastatic behavior of renal cell carcinoma (RCC) is unclear. This study found that M2-Exos promotes migration and invasion in RCC cells. Inhibiting miR-21-5p in M2-Exos significantly reversed their pro-metastatic effects on RCC cells in vitro and in the avian embryo chorioallantoic membrane in vivo tumor model. We further found that the pro-metastatic mechanism of miR-21-5p in M2-Exos is by targeting PTEN-3′UTR to regulate PTEN/Akt signaling. Taken together, our results demonstrate that M2-Exos carries miR-21-5p promote metastatic features of RCC cells through PTEN/Akt signaling. Reversing this could serve as a novel approach to control RCC metastasis.  相似文献   

17.
Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents a potential target for therapeutic interventions. In addition, it regulates important functions of immune cells and is implicated in the modulation of tumour cell–immune cell crosstalk. Selective cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer progression; however, their impact on the antitumour immune response has been overlooked. Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells, we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus, we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly, the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic granules and secreted during degranulation.  相似文献   

18.
Tissues of post mortem donors represent valuable alternative sources for the isolation of primary cells with mesenchymal stem/stromal cell (MSC)-like properties. However, the properties of primary cells derived from different tissues and at different post mortem times are poorly recognized. Here, we aim to identify the optimal tissue source between three knee and peri-knee tissues for the isolation of primary cells with MSC-like properties, and to define the influence of the time post mortem on the properties of these cells. We harvested tissues from subchondral bone marrow, synovium and periosteum from 32 donors at various post mortem times. Primary cells were evaluated using detailed in vitro analyses, including colony formation, trilineage differentiation, immunophenotyping and skeletal stem cell marker-gene expression profiling. These data show that the primary cells with MSC-like properties isolated from these three tissues show no differences in their properties, except for higher expression of CD146 in bone-marrow cells. The success rate of the primary cell isolation is dependent on the post mortem time. However, synovium and periosteum cells isolated more than 48 h post mortem show improved osteogenic and chondrogenic potential. This study suggests that knee and peri-knee tissues from donors even 3 days post mortem are strategic sources of MSCs for regenerative procedures.  相似文献   

19.
Equine osteoarthritis (OA) leads to cartilage degradation with impaired animal well-being, premature cessation of sport activity, and financial losses. Mesenchymal stem cell (MSC)-based therapies are promising for cartilage repair, but face limitations inherent to the cell itself. Soluble mediators and extracellular vesicles (EVs) secreted by MSCs are the alternatives to overcome those limitations while preserving MSC restorative properties. The effect of equine bone marrow MSC secretome on equine articular chondrocytes (eACs) was analyzed with indirect co-culture and/or MSC-conditioned media (CM). The expression of healthy cartilage/OA and proliferation markers was evaluated in eACs (monolayers or organoids). In vitro repair experiments with MSC-CM were made to evaluate the proliferation and migration of eACs. The presence of nanosized EVs in MSC-CM was appraised with nanoparticle tracking assay and transmission electron microscopy. Our results demonstrated that the MSC secretome influences eAC phenotype by increasing cartilage functionality markers and cell migration in a greater way than MSCs, which could delay OA final outcomes. This study makes acellular therapy an appealing strategy to improve equine OA treatments. However, the MSC secretome contains a wide variety of soluble mediators and small EVs, such as exosomes, and further investigation must be performed to understand the mechanisms occurring behind these promising effects.  相似文献   

20.
Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号