首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed β-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.  相似文献   

2.
The small molecule, meso-tetra(α,α,α,α-o-phenylacetamidophenyl) porphyrin (Mr1147.0) was used as complete antigen to elicit MAb through the immunization and cell fusion techniques. The MAb 1F2 obtained was demonstrated to be very pure by MALDI/TOFMS. The subtype of MAb 1F2 is IgG2a, which has a relative molecular weight of 156,678.8 Da.No significant change in the intensity of absorption peaks in UV and CD spectra was observed over a pH range between 6 and 12. The high stability of the abzyme and the tight binding between Fe porphyrin and antibody were also demonstrated. Vmax, Km, κcat, κcat/Km for abzyme are 5.18 × 10−8 Ms−1, 1.50 × 10−8 M, 0.518 s−1, 3.45 × 107 M−1s−1, respectively. The data obtained indicate that catalytic antibody has high catalytic activity. The chloroperoxidase activity of MAb 1F2-Fe porphyrin complex is stable from 10 °C to 60 °C.  相似文献   

3.
A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.  相似文献   

4.
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30–60 °C) and pH (6–9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.  相似文献   

5.
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0–8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s−1, and kcat/KM 3088.46 mM−1·s−1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s−1, and kcat/KM 226.87 mM−1·s−1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.  相似文献   

6.
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.  相似文献   

7.
In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-l-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba2+. This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.  相似文献   

8.
In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence similarity with HSDHs, but, unexpectedly, showed no activity in the oxidation of the tested steroid substrates, e.g., cholic acid. Despite that, Is2-SDR proved to be a very active and versatile ketoreductase, being able to regio- and stereoselectively reduce a diversified panel of carbonylic substrates, including bulky ketones, α- and β-ketoesters, and α-diketones of pharmaceutical relevance. Further investigations showed that Is2-SDR was indeed active in the regio- and stereoselective reduction of oxidized steroid derivatives, and this outcome was rationalized by docking analysis in the active site model. Moreover, Is2-SDR showed remarkable thermostability, with an apparent melting temperature (TM) around 75 °C, as determined by circular dichroism analysis, and no significant decrease in catalytic activity, even after 5 h at 80 °C. A broad tolerance to both water-miscible and water-immiscible organic solvents was demonstrated as well, thus, confirming the potential of this new biocatalyst for its synthetic application.  相似文献   

9.
The complex nanoliposomes encapsulating both a hydrophilic drug vitamin C (vit C) and hydrophobic drug medium-chain fatty acids (MCFAs) was prepared by combining double emulsion method with dynamic high pressure microfluidization. The complex nanoliposomes was further freeze-dried under −86 °C for 48 h with sucrose at the sucrose/lipids ratio of 2:1(w/w) in order to enhance its stability. The freeze-dried complex nanoliposomes under the suitable conditions exhibited high entrapment efficiency of MCFAs (44.26 ± 3.34)%, relatively high entrapment efficiency of vit C (62.25 ± 3.43)%, low average size diameter (110.4 ± 7.28) nm and good storage stability at 4 °C for 60 days with slight changes in mean particle diameter and drug entrapment efficiencies. The results of transmission electron microscopy of freeze-dried complex nanoliposomes also showed that the freeze-dried samples with sucrose were stable without great increase in their particle sizes and without destroying their spherical shape. The results indicated that sucrose presented well protection effects in MCFAs-vit C complex nanoliposomes, suggesting the possibility of further usage in commercial liposomes.  相似文献   

10.
Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastewater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac) was cloned and expressed in Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152 family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of Mut2 at 50 °C and 60 °C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite green dye in 3 h at 70 °C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.  相似文献   

11.
We cloned the gene ACM61449 from anaerobic, thermophilic Caldicellulosiruptor bescii, and expressed it in Escherichia coli origami (DE3). After purification through thermal treatment and Ni-NTA agarose column extraction, we characterized the properties of the recombinant protein (CbPelA). The optimal temperature and pH of the protein were 72 °C and 5.2, respectively. CbPelA demonstrated high thermal-stability, with a half-life of 14 h at 70 °C. CbPelA also showed very high activity for polygalacturonic acid (PGA), and released monogalacturonic acid as its sole product. The Vmax and Km of CbPelA were 384.6 U·mg−1 and 0.31 mg·mL−1, respectively. CbPelA was also able to hydrolyze methylated pectin (48% and 10% relative activity on 20%–34% and 85% methylated pectin, respectively). The high thermo-activity and methylated pectin hydrolization activity of CbPelA suggest that it has potential applications in the food and textile industry.  相似文献   

12.
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis aa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.  相似文献   

13.
In this work, genome mining was used to identify esterase/lipase genes in the archaeon Pyrobaculum sp. 1860. A gene was cloned and functionally expressed in Escherichia coli as His-tagged protein. The recombinant enzyme (rP186_1588) was verified by western blotting and peptide mass fingerprinting. Biochemical characterization revealed that rP186_1588 exhibited optimum activity at pH 9.0 and 80 °C towards p-nitrophenyl acetate (Km: 0.35 mM, kcat: 11.65 s−1). Interestingly, the purified rP186_1588 exhibited high thermostability retaining 70% relative activity after incubation at 90 °C for 6 h. Circular dichroism results indicated that rP186_1588 showed slight structure alteration from 60 to 90 °C. Structural modeling showed P186_1588 possessed a typical α/β hydrolase’s fold with the catalytic triad consisting of Ser97, Asp147 and His172, and was further confirmed by site-directed mutagenesis. Comparative molecular simulations at different temperatures (300, 353, 373 and 473 K) revealed that its thermostability was associated with its conformational rigidity. The binding free energy analysis by MM-PBSA method revealed that the van der Waals interaction played a major role in p-NP ester binding for P186_1588. Our data provide insights into the molecular structures of this archaeal esterase, and may help to its further protein engineering for industrial applications.  相似文献   

14.
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia coli polA mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.  相似文献   

15.
1,3-regiospecific lipases are important enzymes that are heavily utilized in the food industries to produce structured triacylglycerols (TAGs). The Rhizopus oryzae lipase (ROL) has recently gained interest because this enzyme possesses high selectivity and catalytic efficiency. However, its low thermostability limits its use towards reactions that work at lower temperature. Most importantly, the enzyme cannot be used for the production of 1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1,3-stearoyl-2-oleoyl-glycerol (SOS) due to the high melting points of the substrates used for the reaction. Despite various engineering efforts used to improve the thermostability of ROL, the enzyme is unable to function at temperatures above 60 °C. Here, we describe the rational design of ROL to identify variants that can retain their activity at temperatures higher than 60 °C. After two rounds of mutagenesis and screening, we were able to identify a mutant ROL_10x that can retain most of its activity at 70 °C. We further demonstrated that this mutant is useful for the synthesis of SOS while minimal product formation was observed with ROL_WT. Our engineered enzyme provides a promising solution for the industrial synthesis of structured lipids at high temperature.  相似文献   

16.
As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters.  相似文献   

17.
Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19–469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.  相似文献   

18.
Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap-Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.  相似文献   

19.
This study aimed to improve the stability and catalytic properties of Thermomyces lanuginosus lipase (TLL) adsorbed on a hydrophobic support. At the optimized conditions (pH 5 and 25 °C without any additions), the Sips isotherm model effectively fitted the equilibrium adsorption data, indicating a monolayer and the homogenous distribution of immobilized lipase molecules. To preserve the high specific activity of adsorbed lipase, the immobilized lipase (IL) with a moderate loading amount (approximately 40% surface coverage) was selected. Polyethylenimine (PEI) and chitosan (CS) were successfully applied as bridging units to in situ crosslink the immobilized lipase molecules in IL. At the low polymer concentration (0.5%, w/w) and with 1 h incubation, insignificant changes in average pore size were detected. Short-chain PEI and CS (MW ≤ 2 kDa) efficiently improved the lipase stability, i.e., the lipase loss decreased from 40% to <2%. Notably, CS performed much better than PEI in maintaining lipase activity. IL crosslinked with CS-2 kDa showed a two- to three-fold higher rate when hydrolyzing p-nitrophenyl butyrate and a two-fold increase in the catalytic efficiency in the esterification of hexanoic acid with butanol. These in situ crosslinking strategies offer good potential for modulating the catalytic properties of TLL for a specific reaction.  相似文献   

20.
The obligatory step in the life cycle of a lytic bacteriophage is the release of its progeny particles from infected bacterial cells. The main barrier to overcome is the cell wall, composed of crosslinked peptidoglycan, which counteracts the pressure prevailing in the cytoplasm and protects the cell against osmotic lysis and mechanical damage. Bacteriophages have developed two strategies leading to the release of progeny particles: the inhibition of peptidoglycan synthesis and enzymatic cleavage by a bacteriophage-coded endolysin. In this study, we cloned and investigated the TP84_28 endolysin of the bacteriophage TP-84, which infects thermophilic Geobacillus stearothermophilus, determined the enzymatic characteristics, and initially evaluated the endolysin application as a non-invasive agent for disinfecting surfaces, including those exposed to high temperatures. Both the native and recombinant TP84_28 endolysins, obtained through the Escherichia coli T7-lac expression system, are highly thermostable and retain trace activity after incubation at 100 °C for 30 min. The proteins exhibit strong bacterial wall digestion activity up to 77.6 °C, decreasing to marginal activity at ambient temperatures. We assayed the lysis of various types of bacteria using TP84_28 endolysins: Gram-positive, Gram-negative, encapsulated, and pathogenic. Significant lytic activity was observed on the thermophilic and mesophilic Gram-positive bacteria and, to a lesser extent, on the thermophilic and mesophilic Gram-negative bacteria. The thermostable TP84_28 endolysin seems to be a promising mild agent for disinfecting surfaces exposed to high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号