共查询到20条相似文献,搜索用时 9 毫秒
1.
Green synthesis of silver nanoparticles (AgNPs) is an interesting issue of the nanoscience and nanotechnology due to their unique properties. In the present study, Ginkgo biloba L. leaf extract was used to synthesise AgNPs. The effects of quantity of leaves, concentration of Ag nitrate (AgNO3), reaction temperature, and pH were studied to discover the optimal synthesis system. In addition, antifungal effect of AgNPs against Setosphaeria turcica was measured through inhibition zone method. The optimal biosynthesis system contained 15 g of leaf, 8 mM AgNO3, and 80°C at pH 9.0. Under mentioned conditions, the resulting synthesised NPs were nearly spherical, with an average size of 14 nm. In tests, AgNPs synthesised at different pH resulted in different inhibition zones, diameters increased gradually at pH from 3.0 to 11.0, while antifungal effect reached maximum at 9.0. Results of this study offer a new approach for biological control plant pathogenic fungi, and it has potential application for screening novel fungistats with high efficiency and low toxicity.Inspec keywords: antibacterial activity, silver, nanoparticles, nanobiotechnology, pHOther keywords: antifungal effect, green synthesised silver nanoparticles, Setosphaeria turcica, nanoscience, nanotechnology, Ginkgo biloba L. leaf extract, reaction temperature, pH, inhibition zone method, inhibition zones, mass 15 g, temperature 80 degC, size 14 nm, Ag 相似文献
2.
Maryam Gholami Kiana Shahzamani Abdolrazagh Marzban Hamed Esmaeil Lashgarian 《IET nanobiotechnology / IET》2018,12(8):1114
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag 相似文献
3.
《Advanced Powder Technology》2020,31(3):1323-1332
In the current study for the first time, silver nanoparticles (AgNPs) were biosynthesized by reducing agents from hot water extract of Allium ampeloprasum, an antibacterial and anti-inflammatory edible plant. UV–vis. spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometric, and transmission electron microscopy (TEM) analyses have been applied to confirm the formation of biosynthesized AgNPs. Total phenol content and antioxidant activities of AgNPs and extract together with their antibacterial and cytotoxic properties, were evaluated. According to TEM, AgNPs were spherical with a diameter of 8–50 nm. Total phenolic compounds were 15.58 μg/mL, and 10.94 μg/mL at a concentration of 150 μg/mL for the A. ampeloprasum extract and the biosynthesized AgNPs, respectively. Biosynthesized AgNPs showed significant antioxidant activity (81%) as compared to A. ampeloprasum extract (32%) and were active on multi-drug resistant P. aeruginosa. Besides, the cytotoxic activity response was also demonstrated that AgNPs were more potent than the A. ampeloprasum extract and showed high activity against Hela cell line with an IC50 value of less than 25 µg/mL. In conclusion, AgNPs synthesized by A. ampeloprasum extract with excellent antioxidant and antibacterial effects and acceptable cytotoxicity on cervical cancer cells have the potential to be used in biological applications. 相似文献
4.
This study reports synthesis and characterisation of silver nanoparticles and their effect on antifungal efficacy of common agricultural fungicides. Silver nanoparticles were synthesised using biological and chemical reduction methods employing Elettaria cardamomum leaf extract and sodium citrate, respectively. Nanoparticles were then characterised using UV–Visible spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). While XRD assigned particles size of 31.86 nm for green and 41.91 nm for chemical silver nanoparticles with the help of the Debye–Scherrer formula, DLS specified monodisperse nature of both suspensions. Nanoparticles were tested individually and in combination with fungicides (carbendazim, mancozeb, and thiram) against fungal phytopathogens. Silver nanoparticles exhibited good antifungal activity and minimum inhibitory concentration (MIC) was observed in the range of 8–64 µg/ml. Also, they positively influenced the efficacy of fungicides. The mean MIC value (mean ± SD) for combination of all three fungicides with green AgNPs was 1.37 ± 0.6 µg/ml and for chemical AgNPs was 1.73 ± 1.0 µg/ml. Hence, it could be concluded that green AgNPs performed better than chemical AgNPs. Synergy was observed between green AgNPs and fungicides against Fusarium oxysporum. In conclusion, this study reports synthesis of monodisperse silver nanoparticles which serve as efficient antifungal agents and also enhance the fungicidal action of reported agricultural fungicides in combination studies.Inspec keywords: X‐ray diffraction, reduction (chemical), visible spectra, ultraviolet spectra, microorganisms, particle size, nanomedicine, nanofabrication, nanoparticles, agrochemicals, antibacterial activity, transmission electron microscopy, silver, light scattering, scanning electron microscopyOther keywords: antifungal effect, green silver nanoparticles, chemically synthesised silver nanoparticles, carbendazim, mancozeb, thiram, antifungal efficacy, common agricultural fungicides, biological reduction methods, chemical reduction methods, transmission electron microscopy, XRD assigned particles size, chemical silver nanoparticles, green AgNPs, chemical AgNPs, monodisperse silver nanoparticles, antifungal activity, agricultural fungicides, Elettaria cardamomum leaf extract, sodium citrate, UV‐visible spectroscopy, X‐ray diffraction, dynamic light scattering, size 31.86 nm, size 41.91 nm 相似文献
5.
《Journal of Experimental Nanoscience》2013,8(1):129-139
ABSTRACTFollowing the emergence of resistant fungal pathogens, silver nanoparticles (AgNPs) biosynthesized by plants have been recognized as promising tools to combat parasitic fungi. This study evaluated the potency of Amaranthus retroflexus in producing AgNPs, followed by testing their antifungal effects. The AgNPs exhibited a maximum absorption at 430 nm through ultraviolet-visible spectroscopy, while the X-ray diffraction indicated that they were crystal in nature. Fourier transform infrared spectroscopy confirmed the conversion of Ag+ ions to AgNPs due to the reduction by capping material of plant extract. The transmission electron microscope analysis further revealed that the AgNPs were spherical ranging from 10 nm to 32 nm in size. The AgNPs at the concentrations of 50, 100, 200, and 400 μg/mL were applied to the growth of plant, mushroom, and human pathogenic fungi. The 50% minimum inhibitory concentrations (MIC50) against Macrophomina phaseolina, Alternaria alternata and Fusarium oxysporum were observed to be 159.80 ± 14.49, 337.09 ± 19.72, and 328.05 ± 13.29 μg/mL, respectively. However, no considerable inhibition was observed regarding Trichoderma harzianum or Geotrichum candidum. These findings may suggest A. retroflexus as a green solution for biosynthesizing AgNPs with potent antifungal activities against plant pathogenic fungi. 相似文献
6.
Ekarat Detsri Kanrayasiri Kamhom Duangkamol Ruen-ngam 《Journal of Experimental Nanoscience》2016,11(12):930-939
Silver nanoparticles stabilised with anionic polymeric polyelectrolytes were successfully synthesised by high-energy UV reduction. Three types of polyelectrolytes were used including poly(methacrylic acid) (PMA), poly(acrylic acid) (PAA) and poly(4-styrenesulphonic acid-co-maleic acid) (CoPSS). The formation of the prepared solutions exhibited surface plasmon resonance at the wavelength of 475, 730 and 408 nm by using PMA, PAA and CoPSS as the stabilising agents. UV–visible spectrophotometer, transmission electron microscope (TEM) and zeta potential analyser were employed to characterise the formation of the prepared solutions. The silver nanoparticles stabilised with anionic polyelectrolytes were immobilised on polyester air filters using a layer-by-layer technique. This is the sequential dipping of polyester air filters in a dilute solution of cationic poly(diallyldimethylammonium chloride) and anionic polymeric polyelectrolytes capped silver. The surface topography of the polyester air filters were measured by field emission scanning electron microscope. Results showed that silver nanoparticles had the highest surface coverage on the polyester air filters probably because it is a good bonding candidate and insures strong film growth. The multilayers polyester air filters coated silver nanoparticles were tested against the gram positive pathogen Staphylococcus aureus. The deposition of silver nanoparticles onto the polyester air filters resulted in 92.18%, 84.32% and 71.19% of bacteria removal using PMA, PAA and CoPSS as the stabilising agent. 相似文献
7.
Mohsen Mohammadi Sabrieh Assadi Shahisaraee Atiyeh Tavajjohi Negin Pournoori Samad Muhammadnejad Shahla Roodbar Mohammadi Reza Poursalehi Hamid Delavari H 《IET nanobiotechnology / IET》2019,13(2):114
Fluconazole (FLZ) application as a highly successful commercial antifungal azole agent to treat the fungal infections is limited due to emergence of FLZ‐resistant candida. In this study, the potential of green synthesised silver nanoparticles (NPs) as an antifungal agent against Candida albicans fungal pathogen is investigated. The extract of ginger (Zingiber officinale) and thyme (Thymus vulgaris) plays as reducing agent, capping agent and antifungal agent. The UV–visible spectroscopy shows the peak of surface plasmon resonance of synthesised Ag NPs after a period of time. The synthesised Ag NPs are spherical, with average sizes of 12 and 18 nm based on ginger and thyme extract, respectively. Fourier transform infrared spectroscopy confirms the adsorption of the plant extract on the surface of the as‐prepared Ag NPs. Based on the minimum inhibitory concentration (MIC) method against Candida albicans, the antifungal activity of as‐prepared green synthesised Ag NPs shows higher inhibitory in comparison to FLZ. Finally, the Ag NPs synthesised via thyme extract shows no cytotoxicity with concentration below 3.5 ppm, which can be considered as an appropriate candidate instead of FLZ to treat the superficial fungal infections.Inspec keywords: nanoparticles, surface plasmon resonance, adsorption, nanofabrication, particle size, silver, ultraviolet spectra, antibacterial activity, visible spectra, microorganisms, nanomedicine, Fourier transform infrared spectra, biomedical materials, diseases, materials preparation, cellular biophysicsOther keywords: green synthesis, cell cytotoxicity, antifungal activity, fluconazole application, FLZ‐resistant candida, green synthesised silver nanoparticles, antifungal agent, surface coating, surface plasmon resonance, superficial fungal infections, Zingiber officinale, UV‐visible spectroscopy, Thymus vulgaris extracts, antifungal azole agent, Candida albicans fungal pathogen, plant extracts, ginger, Fourier transform infrared spectroscopy, minimum inhibitory concentration method, Ag 相似文献
8.
Elias E. Elemike Damian C. Onwudiwe Anthony C. Ekennia Anine Jordaan 《IET nanobiotechnology / IET》2018,12(6):722
In this study, the conversion of silver ions into ∼30.74 nm sized silver nanoparticles (AgNPs) was achieved in 30 min at a reaction temperature of 80–90°C in aqueous leaf extract of Artemisia afra. The synthesised AgNPs showed surface plasmon resonance in the range of 423–438 nm. Spherical and face‐centred cubic nanoparticles were confirmed by transmission electron microscope (TEM) and X‐ray diffraction (XRD) analysis, respectively. Fourier transform infra‐red (FTIR) results indicated that the obtained nanoparticles were stabilised and capped through the carbonyl and carboxylate ion groups possibly from flavonoids, terpenoids, phenolics and esters content of the extracts. In addition, the AgNPs were assessed for their biological potentials against some microbes and, also, their free radical scavenging ability was established. The AgNPs exhibited interesting antimicrobial and antioxidant properties better than the aqueous extract of A. afra. Inspec keywords: silver, transmission electron microscopy, ultraviolet spectra, visible spectra, surface plasmon resonance, antibacterial activity, X‐ray diffraction, microorganisms, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: silver nanoparticles, reaction temperature, surface plasmon resonance, face‐centred cubic nanoparticles, antioxidant properties, silver ion conversion, aqueous leaf extract, carboxylate ion group, antimicrobial properties, Artemisia afra, spherical nanoparticles, TEM, XRD, FTIR spectra, Ag, temperature 80 degC to 90 degC, time 30.0 min, free radical scavenging, esters, phenolics, terpenoids, flavonoids, carbonyl ion group 相似文献
9.
The present study reports a simple and low cost synthesis of zero‐valent silver nanoparticles (ZVSNPs) from silver nitrate using the leaf extract of Spondias dulcis. The ZVSNPs showed a unique peak at 420 nm in UV–vis spectrum. The SEM image portrayed cuboidal shaped particles. The EDX spectrum designated the elemental silver peak at 3 keV. In XRD, a sharp peak at 32.47° denoted the existence of (1 0 1) lattice plane and the average crystallite size was calculated as 48.61 nm. The lattice parameter was determined as 0.39 nm. The FTIR spectra of the leaf extract and ZVSNPs showed shifts in the specific functional group bands which ascertained the involvement of phytoconstituents in the formation and capping of nanoparticles. The average hydrodynamic size was measured as 59.66 nm by DLS method. A low PDI, 0.187 witnessed the monodispersity. A negative zeta potential value of −15.7 mV indicated the negative surface charges of the nanoparticles. The bactericidal action of ZVSNPs was demonstrated against two pathogens S.typhimurium and E.coli during which a dosage dependent zone of inhibition results was observed. Additionally, the catalytic potential of ZVSNPs was examined for the degradation of methylene blue dye in which an accelerated degradation of the dye was observed.Inspec keywords: antibacterial activity, crystallites, electrokinetic effects, scanning electron microscopy, nanoparticles, particle size, ultraviolet spectra, X‐ray chemical analysis, microorganisms, light scattering, nanofabrication, materials preparation, X‐ray diffraction, visible spectra, silver, dyes, Fourier transform infrared spectraOther keywords: wavelength 420.0 nm, Ag, voltage ‐15.7 mV, size 59.66 nm, size 0.39 nm, size 48.61 nm, electron volt energy 3.0 keV, Fourier transform infrared spectra, methylene blue dye, bactericidal action, dynamic light scattering, lattice parameter, Escherichia coli, Salmonella typhimurium, Spondias dulcis, negative zeta potential, polydispersity index, crystallite size, leaf extract, X‐ray diffraction, energy dispersive X‐ray spectrum, cuboidal‐shaped particles, scanning electron microscopy image, ultraviolet–visible spectrum, silver nitrate, zero‐valent silver nanoparticles 相似文献
10.
《Journal of Experimental Nanoscience》2013,8(1):14-32
ABSTRACTSilver nanoparticles synthesised using aqueous extract of Cocos nucifera (CN) mesocarp were evaluated for their photocatalytic activity under solar irradiation. The silver nanoparticles were synthesised by a green method of harnessing bioactive phytocomponents from the mesocarp of Cocos nucifera. Large-scale application of this process necessitates the manoeuvering of the process parameters for increasing the conversion of silver ions to nanoparticles. Process parameters influencing the morphological characteristics of silver nanoparticles such as precursor salt concentration and pH of the synthesis mixture were studied. The crystalline nanoparticles were characterised using UV-vis spectroscopy, XRD, FTIR, SEM and EDX analysis. CN extract and 5 mM silver nitrate solution at a ratio of 1:4 (v/v) in the synthesis mixture was found to be the optimum. Alkaline initial pH of the synthesis mixture was found to favour the synthesis of smaller sized monodispersed silver nanoparticles. Solar energy was harnessed for the photocatalytic degradation of Malachite green dye using silver nanoparticles obtained through the green synthesis method. Overall process aims at utilisation of naturally available resource for the synthesis of silver nanoparticles as well as the degradation of dyes using these nanoparticles, making it useful in the treatment of wastewater. 相似文献
11.
Green synthesis of metal nanoparticles (NPs) has now received the attention of researchers due to ease of preparation and its potential to overcome hazards of these chemicals for an eco‐friendly milieu. In this study, copper oxide (CuO) NPs were synthesised via Desmodium gangeticum aqueous root extract and standard chemical method, further characterised by UV–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Thermogravimetric analysis and scanning electron microscopy. The nephrotoxicity of the NP obtained from two routes were compared and evaluated at subcellular level in Wistar rat, renal proximal epithelial cells (LLC PK1 cell lines) and isolated renal mitochondria. CuO NP synthesised by chemical route showed prominent nephrotoxicity measured via adverse cytotoxicity to LLC PK1 cells, elevated renal oxidative stress and damage to renal tissue (determined by impaired alanine transaminase, aspartate transaminase, urea, uric acid and creatinine in the blood). However, at the level of cell organelle, CuO NP from both routes are non‐toxic to mitochondrial functional activity. The authors’ finding suggests that CuO NP synthesised by chemical route may induce nephrotoxicity, but may be overcome by co‐administration of antioxidants, as it is not mito‐toxic.Inspec keywords: cellular biophysics, scanning electron microscopy, toxicology, nanomedicine, oxidation, nanoparticles, enzymes, blood, visible spectra, X‐ray diffraction, biochemistry, nanofabrication, antibacterial activity, ultraviolet spectra, copper compounds, Fourier transform infrared spectra, molecular biophysics, thermal analysis, biological tissuesOther keywords: green synthesised copper oxide nanoparticles, murine model, metal nanoparticles, chemicals, eco‐friendly milieu, copper oxide NPs, standard chemical method, X‐ray diffraction, scanning electron microscopy, subcellular level, renal proximal epithelial cells, LLC PK1 cell lines, renal mitochondria, renal tissue, cell organelle, mitochondrial functional activity, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, nephrotoxicity, renal oxidative stress, Desmodium gangeticum aqueous root extract, thermogravimetric analysis, Wistar rat, cytotoxicity, impaired alanine transaminase, aspartate transaminase, urea, uric acid, creatinine, blood, CuO 相似文献
12.
Mubashir Hussain Naveed Iqbal Raja Muhammad Iqbal Muhammad Ejaz Sumaira Aslam AbdUr Rehman Uneeza Javaid 《IET nanobiotechnology / IET》2018,12(5):688
The biosynthesis of silver nanoparticles (AgNPs) is substantial for its applications in different fields. The Moringa oleifera leaves were used as reducing and stabilising agent for the biosynthesis of AgNPs. The synthesised AgNPs were characterised through UV–visible spectroscopy, zeta analyser, scanning electron microscopy (SEM) and energy dispersive Xray (EDX). In this study, effects of the synthesised AgNPs were also evaluated on nucellus tissues germination frequency and biochemical parameters of plant tissues. Nucellus tissues of Citrus reticulata were inoculated on MS medium supplemented with 10, 20, 30 and 40 µg/ml suspension of the synthesised AgNPs. Green synthesised AgNPs enhanced the in vitro germination because of low toxicity and nonfriendly issues. Significant results were obtained for germination parameters i.e. root and shoot length and seedling vigour index in response to 30 µg/ml suspension of green synthesised AgNPs. The 30 µ/ml suspension of AgNPs also enhanced antioxidant activity (41%) and SOD activity (0.36 nM/min/mg FW) while total phenolic content (4.7 µg/mg FW) and total flavonoid content (1.1 µg/mg FW) was significantly high when MS medium was fortified with 40 µg/ml suspension of the synthesised AgNPs. The content of total protein was significant (558 µg/BSA Eq/mg FW) in control plantlets as compared to the other treatments.Inspec keywords: antibacterial activity, ultraviolet spectra, X‐ray chemical analysis, proteins, microorganisms, biochemistry, nanofabrication, silver, nanotechnology, visible spectra, surface plasmon resonance, nanoparticles, suspensions, nanomedicine, scanning electron microscopy, electrokinetic effectsOther keywords: green synthesised silver nanoparticles, superoxide dismutase activity, biochemical profile, UV–visible spectroscopy, Citrus reticulata, green synthesised suspension, EDX detector, zeta potential, scanning electron microscopy, SEM, energy dispersive X‐ray, EDX, total phenolic content, total flavonoid content, size 423.0 nm to 425.0 nm, size 8.0 nm to 28.0 nm 相似文献
13.
This study is aimed at determining the mutagenic and anti‐mutagenic properties of silver nanoparticles (AgNPs) biosynthesised from Streptomyces griseorubens AU2. To the authors’ knowledge, this is the first study about the investigation of these properties for biogenic AgNPs bacterially synthesised. The mutagenic and anti‐mutagenic potencies were determined by the Ames Salmonella /microsome mutagenicity test using Salmonella typhimurium TA98 and TA100 strains. After determining the cytotoxic dose of green synthesised AgNPs against S. typhimurium TA98 and TA100 strains, subcytotoxic doses (250, 100 and 50 µg/plate) were used in the assays. Biogenic AgNPs at the tested concentrations exhibited no mutagenic effects in the mutagenicity test conducted with the test strains. Moderate anti‐mutagenic effects were observed at high test concentrations. The concentration of 250 µg/plate showed the strongest anti‐mutagenic activity on S. typhimurium TA98. The results did not indicate any mutagenic effect against either of the strains used for screening the mutagenicity of the biogenic AgNPs as they were found to be genotoxically safe. It can be concluded that biogenic AgNPs showed great anti‐mutagenic attributes, standing as a significant factor with respect to medical, pharmaceutical and cosmetic industries.Inspec keywords: biomedical materials, microorganisms, nanomedicine, nanoparticles, silver, toxicologyOther keywords: in vitro mutagenic properties, in vitro antimutagenic properties, green synthesised silver nanoparticles, Streptomyces griseorubens AU2, biogenic silver nanoparticle biosynthesis, microsome mutagenicity test, Salmonella typhimurium TA98 strains, Salmonella typhimurium TA100 strains, subcytotoxic doses, medical industries, pharmaceutical industries, cosmetic industries, Ag 相似文献
14.
Farinaz Ghanbar Amir Mirzaie Fatemeh Ashrafi Hassan Noorbazargan Mojgan Dalirsaber Jalali Soheil Salehi Seyed Ataollah Sadat Shandiz 《IET nanobiotechnology / IET》2017,11(4):485
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag 相似文献
15.
Dasari Ayodhya M. Venkatesham A. Santoshi kumari G. Bhagavanth Reddy D. Ramakrishna 《Journal of Experimental Nanoscience》2016,11(6):418-432
A green method for the solvothermal synthesis of copper sulphide nanoparticles (CuS NPs) using xanthan gum as a capping agent was developed. The CuS NPs were characterised by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, Brunauer–Emment–Teller, zeta analysis, thermal gravimetric– differential thermal analysis, Fourier transform infrared and UV–visible absorption spectra. These characterisations together determine the composition, structural, thermal and optical properties. The UV–visible spectrum had a broad absorption in the visible range. The particle size of the products was observed by TEM in the range of 8–20 nm. The photocatalytic performance of the CuS NPs was evaluated for the degradation of organic dyes (methylene blue, rhodamine B, eosin Y and congo red) under irradiation of solar, visible and UV lights. The CuS NPs showed good photocatalytic activity. Kinetic analyses indicate that the photodegradation rates of dyes usually follow pseudo-first-order kinetics for degradation mechanisms. 相似文献
16.
Amjed Mirza Oda Hussein Abdulkadhim Sura I.A. Jabuk Rahma Hashim Iman Fadhil Dhay Alaa Ali Kareem 《IET nanobiotechnology / IET》2019,13(5):530
Green synthesis of silver nanoparticles (AgNPs) was accomplished using different volumes of cauliflower extract and 0.001 M silver nitrate solution at 80°C for 15 min. A brownish‐red solution of AgNPs formed was tested by ultraviolet–visible absorption spectroscopy, Fourier‐transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). Surface plasmon resonance of AgNPs appeared at 416 nm. Also, the kinetic of AgNPs formation was studied and follows a sigmoidal pattern. Storing time was studied for the freshly prepared AgNPs after 60 days. FTIR analysis shows the adsorption of active components on AgNPs surface, and these components are responsible for reduction besides working as a stabiliser like a capping agent, also FTIR analysis of AgNPs after storage showed no change in peaks location. The SEM exhibited a globular shape of AgNPs, and the particle size ranged from 25 to 100 nm, while the XRD particle size calculation was 25 nm with cubic phase lattice. The antibacterial activity was tested against Gram‐positive and ‐negative bacteria showed an inhibition zone of 16–27 mm and the antibacterial activity tested for the same bacteria after storage for about 10 months showed an inhibition zone of 6–10 mm.Inspec keywords: microorganisms, reduction (chemical), nanofabrication, surface plasmon resonance, silver, transmission electron microscopy, nanoparticles, particle size, visible spectra, ultraviolet spectra, adsorption, antibacterial activity, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, nanomedicineOther keywords: antibacterial activity, green synthesis, silver nanoparticle, brownish‐red solution, surface plasmon resonance, FTIR analysis, active components, silver nitrate solution, ultraviolet‐visible absorption spectroscopy, AgNP surface, cauliflower extract, Fourier‐transform infrared spectroscopy, scanning electron microscopy, SEM, X‐ray diffraction, XRD, sigmoidal pattern, storing time, adsorption, stabiliser, capping agent, globular shape, particle size, cubic phase lattice, Gram‐positive bacteria, Gram‐negative bacteria, inhibition zone, reduction, time 60.0 d, temperature 80.0 degC, time 15.0 min, wavelength 416.0 nm, Ag 相似文献
17.
Parisa Ghorbani Farideh Namvar Masoud HomayouniTabrizi Mozhgan Soltani Ehsan Karimi Parichehreh Yaghmaei 《IET nanobiotechnology / IET》2018,12(5):600
Currently, nanotechnology and nanoparticles (NPs) are recognised due to their extensive applications in medicine and the treatment of certain diseases, including cancer. Silver NPs (AgNPs) synthesised by environmentally friendly method exhibit a high medical potential. This study was conducted to determine the cytotoxic and apoptotic effects of AgNPs synthesised from sumac (Anacardiaceae family) fruit aqueous extract (AgSu/NPs) on human breast cancer cells (MCF‐7). The anti‐proliferative effect of AgSu/NPs was determined by MTT assay. The apoptotic properties of AgSu/NPs were assessed by morphological analysis and acridine orange/propidium iodide (AO/PI) and DAPI staining. The mechanism of apoptosis induction in treated cells was investigated using molecular analysis. Overall results of morphological examination and cytotoxic assay revealed that AgSu/NPs exert a concentration‐dependent inhibitory effect on the viability of MCF‐7 cells (IC50 of ∼10 µmol/48 h). AO/PI staining confirmed the occurrence of apoptosis in cells treated with AgSu/NPs. In addition, molecular analysis demonstrated that the apoptosis in MCF‐7 cells exposed to AgSu/NPs was induced via up‐regulation of Bax and down‐regulation of Bcl‐2. These findings suggested the potential use of AgSu/NP as cytotoxic and pro‐apoptotic efficacy and its possible application in modern medicine for treating certain disorders, such as cancer.Inspec keywords: nanoparticles, silver, nanomedicine, biomedical materials, toxicology, cancer, molecular biophysics, proteins, biochemistry, cellular biophysics, nanofabricationOther keywords: Ag, Bcl‐2 down‐regulation, Bax up‐regulation, MCF‐7 cell viability, concentration‐dependent inhibitory effect, cytotoxic assay, molecular analysis, DAPI staining, acridine orange‐propidium iodide staining, morphological analysis, MTT assay, human breast cancer cells, sumac fruit aqueous extract, Anacardiaceae family, cytotoxic effects, drug delivery function, diseases, Rhus coriaria L, silver nanoparticles, antiproliferative potential, apoptotic efficacy 相似文献
18.
Multi‐drug resistance in pathogenic bacteria has created immense clinical problem globally. To address these, there is need to develop new therapeutic strategies to combat bacterial infections. Silver nanoparticles (AgNPs) might prove to be next generation nano‐antibiotics. However, improved efficacy and broad‐spectrum activity is still needed to be evaluated and understood. The authors have synthesised AgNPs from Withania somnifera (WS) by green process and characterised. The effect of WS‐AgNPs on growth kinetics, biofilm inhibition as well as eradication of preformed biofilms on both gram‐positive and gram‐negative pathogenic bacteria was evaluated. The authors have demonstrated the inhibitory effect on bacterial respiration and disruption of membrane permeability and integrity. It was found that WS‐AgNPs inhibited growth of pathogenic bacteria even at 16 µg/ml. At sub‐minimum inhibitory concentration concentration, there was approximately 50% inhibition in biofilm formation which was further validated by light and electron microscopy. WS‐AgNPs also eradicated the performed biofilms by varying levels at elevated concentration. The bacterial respiration was also significantly inhibited. Interaction of WS‐AgNPs with test pathogen caused the disruption of cell membrane leading to leakage of cellular content. The production of intracellular reactive oxygen species reveals that WS‐AgNPs exerted oxidative stress inside bacterial cell causing microbial growth inhibition and disrupting cellular functions.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, cellular biophysics, microorganisms, biomembranes, electron microscopy, oxidation, biochemistry, permeabilityOther keywords: broad‐spectrum inhibitory effect, green synthesised silver nanoparticles, Withania somnifera (L.), microbial growth, putative mechanistic approach, multidrug resistance, therapeutic strategies, bacterial infections, next generation nanoantibiotics, broad‐spectrum activity, WS‐AgNPs, growth kinetics, biofilm inhibition, gram‐positive pathogenic bacteria, gram‐negative pathogenic bacteria, bacterial respiration, membrane permeability, membrane integrity, subminimum inhibitory concentration concentration, biofilm formation, light pathogenic bacteria, electron microscopy, cell membrane, cellular content leakage, intracellular reactive oxygen species, oxidative stress, microbial growth inhibition, Ag 相似文献
19.
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure. 相似文献
20.
Arun Babu Birusanti Umamahesh Mallavarapu Devanna Nayakanti Chandra Sekhar Espenti Sreenivasulu Mala 《IET nanobiotechnology / IET》2019,13(1):71
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag 相似文献