首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

2.
Antibacterial activity of copper monodispersed nanoparticles into sepiolite   总被引:1,自引:0,他引:1  
Copper monodispersed nanoparticles (2–5 nm) embedded into submicron particles of sepiolite (Mg8Si12O30(OH)4(H2O)4·8H2O), suitable to be used for biological applications have been obtained after a specific treatment and subsequent reduction process. Cu/Sepiolite particles have revealed as a strong bactericide (similar to Triclosan) so that they were able to decrease the starting microorganism concentrations of Staphylococcus aureus or Escherichia coli by 99.9%.  相似文献   

3.
Bayberry tannin (BT), a typical plant polyphenol, was grafted on collagen fiber (CF) in different mass ratios. Subsequently, the BT-grafted CF (BT-CF) was used as carrier and stabilizer to prepare BT-CF stabilized silver nanoparticles (BT-CF-AgNPs). Scanning Electron Microscopy image of BT-CF-AgNPs showed that the BT-CF-AgNPs was in ordered fibrous state. X-ray Diffraction patterns and Transmission Electron Microscopy images offered evidence that the Ag nanoparticles were well dispersed on BT-CF. Fourier Transform-Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) investigations revealed that the Ag NPs were stabilized by the phenolic hydroxyls and quinones of BT on CF through electron donation/acception interaction. Antibacterial experiments demonstrated that BT-CF-AgNPs exhibited high antibacterial activity. When cell suspensions of Escherichia coli and Staphylococcus aureus (104–105 cfu/mL) were contacted with BT0.19-CF-AgNPs (mass ratio of BT to CF = 0.19, conc. of Ag = 8 μg/mL) at 310 K under constant shaking, the number of cells went down to zero within 2 h. In addition, the minimal inhibitory concentration of BT0.19-CF-AgNPs against Escherichia coli, Staphylococcus aureus, Penicillium glaucum and Saccharomyces cerevisiae was 2 μg/mL, 4 μg/mL, 6 μg/mL and 12 μg/mL Ag, respectively. During recycling use, the antibacterial activity of BT0.19-CF-AgNPs against Escherichia coli can last for 5 cycles. These facts suggest that BT-CF-AgNPs can be used as a new and effective antibacterial agent.  相似文献   

4.
载铜多壁碳纳米管的抗菌活性研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在多壁碳纳米管(MWCNTs)表面负载纳米铜,制备复合抗菌材料MWCNTsCu。X射线能量色散谱(EDS)、透射电子显微镜(TEM)表征结果表明,纳米铜成功地负载在MWCNTs表面,纳米铜分散良好。以大肠杆菌为目标,评价了MWCNTs-Cu对水中细菌的抗菌活性,探讨了其抗菌机理。研究结果表明,MWCNTs-Cu对大肠杆菌表现出很强的抗菌性,其中,MWCNTs对大肠杆菌有强吸附性,纳米铜起主要杀菌作用。  相似文献   

5.
Silica hybrid materials containing tetraethyl orthosilicate (TEOS) as SiO2 precursor, hydroxypropyl cellulose (HPC) as an organic compound with incorporation of silver were prepared, and their structure and surface morphology were examined by FTIR measurements and SEM. The quantity of organic substance was 5 wt.% and the silver concentration varied from 0.5 to 2.5 wt.%. It is suggested that the main structural units build an amorphous network of synthesized hybrids from depolymerized [SiO4] tetrahedra giving strong bands at 1050 and 790 cm? 1. The surface morphology changed from smooth to rough with the increasing amount of silver. The possible antibacterial behavior of the hybrid materials was also studied. The results indicate pronounced antibacterial performance against Escherichia coli and Bacillus subtilis. Highest antibacterial activity was detected against B. subtilis. The increase of silver concentration up to 2.5 wt.% Ag leads to stronger antibacterial effects with both strains.  相似文献   

6.
In this study, cupric oxide (CuO) nanoparticles were prepared using sonochemical method. The prepared nanoparticles were studied using X‐ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. The colloidal chitosan (CS) solution was prepared using ultrasound irradiation method and simultaneously mixed with CuO nanoparticles. The coatings of colloidal solution with and without CuO nanoparticles were studied through TEM images. The cotton fabrics were separately soaked in the prepared nanoparticle‐containing (hybrid) solutions by sonication method followed by pad‐dry‐cure method. The structural, functional, and morphological analyses of the coated and uncoated fabrics were performed using XRD, FTIR‐attenuated total reflectance, and SEM analyses, respectively. The hybrid‐coated cotton fabrics showed better antibacterial activity against Staphylococcus aureus and Escherichia coli. The bioactivity performance of the coated fabrics was in the order of CuO‐coated fabric > CS‐coated fabric.Inspec keywords: cotton fabrics, nanoparticles, antibacterial activity, transmission electron microscopy, Fourier transform spectroscopy, infrared spectroscopy, scanning electron microscopy, copper compoundsOther keywords: antibacterial activity, hybrid chitosan‐cupric oxide nanoparticles, cotton fabric, cupric oxide nanoparticles, sonochemical method, X‐ray diffraction, XRD pattern, Fourier transform infrared spectroscopy, FTIR spectroscopy, scanning electron microscopy, SEM, transmission electron microscopy, TEM methods, colloidal chitosan solution, ultrasound irradiation method, colloidal solution, TEM images, cotton fabrics, nanoparticle‐containing solutions, sonication method, pad‐dry‐cure method, morphological analyses, structural analyses, functional analyses, FTIR‐attenuated total reflectance, SEM analyses, hybrid‐coated cotton fabrics, Staphylococcus aureus, Escherichia coli, bioactivity performance, CuO  相似文献   

7.
In this work, a novel method was used to prepare carbon modified ZnO nanoparticles. The nanoparticles were coated with a layer of poly(methyl methacrylate) by γ radiation firstly, and then the coated nanoparticles were annealed in air. The polymer was burned and carbon was left on the surface of ZnO nanoparticles. A stable blue luminescence peak (~420 nm) can be observed for the carbon modified ZnO nanoparticles. The carbon modified ZnO nanoparticles were also investigated by X-ray photoelectron spectroscopy. The origin of the blue emission was discussed. The blue PL is related to the left carbon. This novel method also can be used to prepare other carbon modified nanoparticles.  相似文献   

8.
The resistance to current antibiotics results in the emergence of health-threatening bacteria. Silver nanoparticles are known to exhibit broad-spectrum antibacterial activities without the development of resistance. Herein, we developed a green synthetic method for the preparation of silver nanoparticles with sialyllactose instead of toxic chemicals as a reducing agent, which would improve its therapeutic applicability and increase its biocompatibility. Oven incubation, autoclaving and microwave irradiation methods were applied to prepare the silver nanoparticles. High resolution-transmission electron microscopy and atomic force microscopy images revealed mostly spherical and amorphous silver nanoparticles with an average diameter of 23.64 nm. Fourier Transform-infrared spectra suggest that the N-H amide of sialyllactose might be involved in the binding of silver nanoparticles. Based on thermogravimetric analyses, 2,3-sialyllactose-reduced silver nanoparticles are composed of 54.3 wt% organic components and 45.7 wt% metallic silver. Enhanced antibacterial activities of silver nanoparticles (approximately 8-fold) were observed against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium (minimum inhibitory concentration 16 microg/mL). Next, we employed the use of carbohydrate stabilizers to increase the stability of silver nanoparticles during a freeze-drying process. It was found that sucrose and trehalose were the most effective stabilizers. In addition, silver nanoparticles possessed excellent salt stability as well as on-the-shelf stability in the presence of these stabilizers. Derivatives of sialic acid are known to be anti-influenza agents; therefore, the newly prepared silver nanoparticles may serve as useful antibacterial and antiviral agents to cope with both pathogenic bacteria and viruses in the near future.  相似文献   

9.
This study reveals the antibacterial and catalytic activity of biogenic gold nanoparicles (AuNPs) synthesised by biomass of Trichoderma harzianum. The antibacterial activity of AuNPs was analysed by the means of growth curve, well diffusion and colony forming unit (CFU) count methods. The minimum inhibitory concentration of AuNPs was 20 µg/ml. AuNPs at 60 µg/ml show effective antibacterial activity as optical absorption was insignificant. The well diffusion and CFU methods were also applied to analyse the effect of various concentration of AuNPs. Further, the catalytic activity of AuNPs was analysed against methylene blue (MB) as a model pollutant in water. MB was degraded 39% in 30 min in the presence of AuNPs and sodium borohydrate and the rate constant (k) was found to be 0.2 × 10−3 s−1. This shows that the biogenic AuNP is an effective candidate for antibacterial and catalytic degradation of toxic pollutants.Inspec keywords: antibacterial activity, catalysis, nanoparticles, gold, nanofabrication, biomedical materials, nanomedicine, renewable materials, surface diffusion, dyes, water pollution, reaction rate constants, toxicologyOther keywords: antibacterial activity, catalytic activity, biogenic gold nanoparticles, Trichoderma harzianum, biomass, growth curve, diffusion, colony forming unit count methods, minimum inhibitory concentration, optical absorption, CFU methods, methylene blue, water pollutant, catalytic degradation, toxic pollutants, sodium borohydrate, rate constant, Au  相似文献   

10.
Polymer coatings featuring nonleaching antibacterial agents are needed to significantly reduce bacterial colonization and subsequent biofilm formation. Previously, single-walled carbon nanotubes (SWNTs) have been reported to be strong antimicrobial agents that kill microbes on contact. However, the antibacterial activity of freestanding polymer mats with a low weight percent of incorporated SWNTs has not been demonstrated. In this study, four different weight percents of well characterized, small diameter (0.8 nm) SWNTs were incorporated into electrospun polysulfone (PSf) mats. Electrospun PSf-SWNT mats were observed to be flexible and composed of continuous, cylindrical, and randomly oriented fibers. SEM micrographs revealed that SWNT ends were distributed along the longitudinal fiber axis. Loss of bacteria (Escherichia coli) viability was observed to directly correlate to increased SWNT incorporation within the mat, ranging from 18% for 0.1 wt % SWNTs to 76% for 1.0 wt % SWNTs. Time-dependent bacterial cytotoxicity studies indicated that the antimicrobial action of the PSf-SWNT mats occurs after a short contact time of 15 min or less. This study demonstrates the potential applicability of electrospun PSf-SWNT mats as antibacterial coatings.  相似文献   

11.
We demonstrate that any metal, even gold, silver, and copper, can act as a catalyst for SWCNT synthesis in chemical vapor deposition (CVD). Metal nanoparticles 3 nm or less in diameter, introduced into CVD ambience immediately after heat treatment at 800-950 degrees C in air, produce SWCNTs. The activation method is effective for copper and various noble metals as well as for iron-family elements. This implies that any metal particle may produce SWCNTs when its size becomes 1-3 nm. In other words, carbon atoms can form SWCNTs in a self-assembling fashion on nanoparticles without the specific functions of iron-family elements.  相似文献   

12.
Single-walled carbon nanotubes were synthesized from graphite using the arc discharge technique. A nickel/yttrium/graphite mixture was used as the catalyst. After purification by sonication in a Triton X-100 solution, nickel-cobalt metal nanoparticles were deposited on the surface of the single-walled carbon nanotubes. The resulting material and/or the nanotubes themselves were characterized by physisorption, Raman spectroscopy, high-resolution transition electron microscopy and X-ray diffraction. Raman spectroscopy indicates that the nanotubes, prepared by the arc discharge technique, are semi-conducting with a diameter centering at 1.4 nm. The average nickel-cobalt particle size is estimated to be in the region of 8 nm. The catalytic activity of the material was examined for the hydrogenation of unsaturated fatty acid methyl esters obtained from avocado oil. The carbon nanotube supported nickel-cobalt particles effectively hydrogenate polyunsaturated methyl linoleate to monounsaturated methyl oleate. In contrast to a conventional nickel on kieselghur catalyst, further hydrogenation of methyl oleate to undesired methyl stearate was not observed.  相似文献   

13.
Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.  相似文献   

14.
15.
The development of reliable, eco-friendly protocol for the synthesis of nanomaterials is a challenging issue in the current nanotechnology. In the present study, we reported an environmentally benign and rapid method for biogenesis of silver nanoparticles using Gram-positive bacterium Lactobacillus acidophilus which acts both as reducing and capping agent. It was observed that the culture filtrate reduced silver ions into silver nanoparticles within 24 hrs of reaction time under room temperature. The UV–Vis spectrum shows the absorbance maximum at 434 nm, which is a characteristic of surface plasmon resonance of silver. X-ray diffraction analysis showed that the nanoparticles were of face-centred cubic crystalline structure. The presence of stable spherical-shaped silver nanoparticles in the size range of 4–50 nm was determined using the transmission electron microscopy analysis. Further, these nanoparticles showed effective antibacterial activity towards Klebsiella pneumoniae. The mechanism of the silver nanoparticle bactericidal activity is discussed in terms of its interaction with the cell membrane of bacteria by causing cytolysis and leakage of proteins and carbohydrates.  相似文献   

16.
In this paper a novel method to develop carbon soot filled polyester graded composites has been reported. Dielectric measurements were conducted on these graded composites in the temperature range from 30 to 150 °C and in the frequency range 1–10 kHz to study and analyse the effect of temperature and frequency variation on dielectric constant (ε′) and dielectric dissipation factor (tan δ). It was observed that an increase of carbon soot content increased the dielectric constant gradually, which established the formation of a graded structure. Dielectric data were analysed using existing theoretical models. It was observed that Maxwell–Garnett model fits best for the dielectric data obtained experimentally for these graded composites. Compensation law confirmed the semi conducting behaviour of the composites. Cole–Cole plot for graded composites showed dielectric relaxation probably due to dipolar groups of polyester and interfacial polarization that occurred in the composites.  相似文献   

17.
Lou L  Luo L  Wang W  Xu X  Hou J  Xun B  Chen Y 《Journal of hazardous materials》2011,190(1-3):474-479
The widely existing fly ash and soot produced during the process of combustion, which are often known as waste but also an important source of black carbon (BC) in the environment, were treated by HCl and HF solution for this study, and recorded as FC and SC, respectively. A series of experiments were carried out to investigate the toxicity of pentachlorophenol (PCP) in sediment, influence of various BCs in sediment with different contents (0%, 0.5%, 1%, 2%, 5% and 10%) on the extractability and toxicity of PCP (50mg/kg), and toxicity of various BC in sediment. The results demonstrated that the PCP exposure to wheat seed exhibited a dose-dependent behavior, and the extractability and toxicity of PCP decreased with the increasing content of BC in sediment. The PCP extractable rate was significantly (P<0.01) influenced by the higher content of BCs. Noticeably, each BC had no toxic but stimulative effect on root elongation and early seedling growth. Furthermore, it was found that the inhibitive effect on the extractability and toxicity of PCP and the stimulative effect on root elongation and early seedling growth caused by SC were more evident than FC.  相似文献   

18.
Along with the extensive range of exotic nanoparticle (NPs) applications, investigation of magnetic NPs (MNPs) in vitro has ushered modern antibacterial studies into an increasingly attractive research area. A great number of microorganisms exist in the size scales from nanometre to micrometre regions. The enormous potential of engineered MNPs in therapeutic procedures against various drug‐resistant bacteria has declined the menace of fatal bacterial infections. Many biocompatible MNPs have been introduced that possess remarkable impacts on various bacterial strains. Conventional synthesis methods such as co‐precipitation or hydrothermal techniques have been widely adopted in the production of MNPs. The MNPs for antibacterial applications are mainly required to be superparamagnetic, recyclable and biocompatible. To implement novel strategies in developing new generation antimicrobial magnetic nanomaterials, it is essential to obtain a comprehensive preview of recent achievements in synthesis, proposed antibacterial mechanisms and characterisation techniques of these nanomaterials. This review highlights notable aspects of antibacterial activity in engineered MNPs and nanocomposites including their particle properties (size, shape and saturation magnetisation), antibacterial mechanisms, synthesis methods, testing methods, surface modifications and minimum inhibitory concentrations.Inspec keywords: nanocomposites, magnetic particles, biomedical materials, antibacterial activity, nanofabrication, nanoparticles, drugs, precipitation (physical chemistry), reviews, nanomagnetics, superparamagnetism, nanomedicineOther keywords: drug‐resistant bacteria, fatal bacterial infections, bacterial strains, conventional synthesis methods, antibacterial applications, antibacterial activity, exotic nanoparticle applications, antibacterial mechanisms, antimicrobial magnetic nanomaterials, antibacterial MNP, biocompatible MNP, in vivo magnetic nanoparticle, review, hydrothermal techniques, superparamagnetism, nanocomposites, surface modifications  相似文献   

19.
Phenolic-resin fibre was co-graftpolymerized with methyl methacrylate and methacrylic acid. The weight of the fibre increased by 26% after grafting. The grafted fibre was soaked in silvernitrate solution to introduce silver ion on methacrylic acid in the graft by an ion-exchange reaction, followed by carbonization at 900 °C for 30 min under a nitrogen stream and activation at 900 °C under a steam stream. After activation for 40 min, the resulting fibre showed a silver content of 8.3 wt% a specific surface area of 1300 m2g–1 and antimicrobial activity against Staphylococcus aureus and Escherichia coli. The average crystallite size of the silver in this fibre was 30 nm, which suggests co-graftpolymerization is a useful technique to disperse fine silver particles in the activated carbon fibre. After soaking in flowing tap water for 10 and 20 days, this activated carbon fibre lost about 50 wt% of silver but kept its antibacterial activity.  相似文献   

20.
Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号