首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

2.
王海成  汪凡曦  于广华 《功能材料》2012,43(8):1034-1037
利用水解共沉淀法制备了Fe3O4纳米颗粒,研究了温度和pH值对Fe3O4纳米颗粒粒径、形貌的影响关系。研究结果表明,反应温度从30℃升高到90℃,Fe3O4颗粒的粒径从6~8nm增大到10~12nm;同时,Fe3O4颗粒的饱和磁矩也随着Fe3O4颗粒粒径的增加而升高。溶液pH值会影响Fe3O4纳米颗粒的形状,高pH值易使合成的Fe3O4纳米颗粒为四方形,随着pH值的降低,Fe3O4纳米颗粒向球形转变。Fe3O4纳米颗粒的粒径和形状的可控性为进一步合成、调控Fe3O4电磁功能复合材料奠定了良好基础。  相似文献   

3.
Magnetic nanoparticles are of great interest both for fundamental research and emerging applications. In the biomedical field, magnetite (Fe(3)O(4)) has shown promise as a hyperthermia-based tumor therapeutic. However, preparing suitable solubilized magnetite nanoparticles is challenging, primarily due to aggregation and poor biocompatibility. Thus methods for coating Fe(3)O(4) NPs with biocompatible stabilizers are required. We report a new method for preparing Fe(3)O(4) nanoparticles by co-precipitation within the pores of agar gel samples. Permeated agar gels were then dried and ground into a powder, yielding agar-conjugated Fe(3)O(4) nanoparticles. Samples were characterized using XRD, FTIR, TGA, TEM and SQUID. This method for preparing agar-coated Fe(3)O(4) nanoparticles is environmentally friendly, inexpensive and scalable.  相似文献   

4.
Ferromagnetic Fe3O4 nanoparticles with diameter of ∼27 nm were prepared by a hydrothermal route in the presence of a surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT). The as-synthesized product was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The hysteresis loops of the iron oxide nanoparticles were measured using a physical property measuring system (PPMS), and the results showed a superparamagnetic behavior at room temperature.  相似文献   

5.
Liu JC  Tsai PJ  Lee YC  Chen YC 《Analytical chemistry》2008,80(14):5425-5432
Escherichia coli and Staphylococcus saprophyticus are the most common causes of urinary tract infections, with 80% of these infections caused by uropathogenic E. coli. Because the P fimbriae of E. coli have specificity toward Gal(alpha1-4)Gal beta units, pigeon ovalbumin (POA), whose structure contains terminal Gal(alpha1-4)Gal beta moieties, was used as a probe for interaction with P fimbriated E. coli. The functional affinity probes for these bacteria by immobilizing POA--a phosphoprotein--onto the surface of magnetic iron oxide nanoparticles (NPs) coated with alumina (Fe3O4@Al2O3), using the phosphate units of POA as linking groups for the formation of phosphate-alumina complexes. The immobilization process occurred within 30 s when performing the reaction under microwave heating. The magnetic POA-Fe3O4@Al2O3 NPs generated using this facile approach exhibited specificity toward P fimbriated E. coli. The bacteria targeted by the affinity probes were characterized by matrix-assisted laser desorption/ionization mass spectrometry. The detection limit toward uropathogenic bacteria when using this approach was approximately 9.60 x 10(4) cfu/mL (0.5 mL).  相似文献   

6.
纳米Fe3O4颗粒及磁性液体的制备   总被引:10,自引:0,他引:10  
用低温相转化法制备了小粒径的Fe3O4纳米颗粒,用油酸对纳米颗粒进行了表面处理,溶液pH为6.90,80℃下恒温反应50~60min时磁性粉体颗粒的改性效果较好。然后将包覆颗粒分散到载液中制得磁性液体。实验中用XRD、TEM、VSM、IR光谱等对所制的样品进行了相应表征,并将UV光谱分析方法用于油酸包覆的定量评估,从而建立了磁性颗粒表面修饰的表征方法。  相似文献   

7.
氧化硅-磁性Fe3O4复合纳米粒子的制备及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶胶-凝胶法通过正硅酸四乙酯(TEOS)碱催化水解,在Fe3O4纳米粒子表面包裹氧化硅。利用生物倒置显微镜、场发射透射电镜、X射线衍射仪、激光粒度仪、振动样品磁强计对氧化硅/Fe3O4复合粒子的外貌、粒径及粒径分布、饱和磁化强度、化学成分进行了表征。结果表明,所制得的复合粒子性能良好,粒径在15 nm左右,饱和磁化强度为109 emu/g。用该磁性纳米复合粒子提取质粒DNA和基因组DNA取得良好的效果,可用于食品中致病菌的分析判定和疾病的基因诊断分析。  相似文献   

8.
Due to the strong effect of nanoparticles'' size and surface properties on cellular uptake and bio‐distribution, the selection of coating material for magnetic core–shell nanoparticles (CSNPs) is very important. In this study, the effects of four different biocompatible coating materials on the physical properties of Fe3 O4 (magnetite) nanoparticles (NPs) for different biomedical applications are investigated and compared. In this regard, magnetite NPs are prepared by a simple co‐precipitation method. Then, CSNPs including Fe3 O4 as a core and carbon, dextran, ZnO (zincite) and SiO2 (silica) as different shells are synthesised using simple one‐ or two‐step methods. A comprehensive study is carried out on the prepared samples using X‐ray diffraction, vibrating sample magnetometry, transmission electron microscopy and Fourier transform infrared spectroscopy analyses. According to the authors'' findings, it is suggested that carbon‐ and dextran‐coated magnetite NPs with high M s have great potential in the application of magnetic resonance imaging contrast agents. Moreover, silica‐coated magnetite NPs with high coercivity are potentially suitable candidates for hyperthermia and ZnO‐coated Fe3 O4 is potentially suitable for photothermal therapy.Inspec keywords: iron compounds, carbon, silicon compounds, zinc compounds, nanomedicine, biomedical materials, nanofabrication, nanoparticles, magnetic particles, coatings, X‐ray diffraction, magnetometry, transmission electron microscopy, Fourier transform spectra, infrared spectra, biomedical MRI, hyperthermia, radiation therapyOther keywords: biomedical applications, magnetic core‐shell nanoparticles, CSNP, cellular uptake, biodistribution, coating material, biocompatible coating materials, co‐precipitation, dextran, zincite, silica, X‐ray diffraction, vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, magnetic resonance imaging contrast agents, hyperthermia, photothermal therapy, SiO2 ‐Fe3 O4 , ZnO‐Fe3 O4   相似文献   

9.
There is a growing demand for the development of non‐toxic, cost‐effective, and environmentally benign green synthetic strategy for the production of metal nanoparticles. Herein, the authors have reported Actinodaphne madraspatana Bedd (AMB) leaves as the bioreducing agent for the synthesis of palladium nanoparticles (PdNPs) and its catalytic activity was evaluated for the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol with undisruptive effect on human health and environment. The broad and continuous absorbance spectrum obtained in the UV–visible region indicated the formation of PdNPs. The synthesized PdNPs were found to be crystalline, spherical, and quasi‐spherical in shape with an average particle size of 13 nm was confirmed by X‐ray diffractometer and transmission electron microscope. Fourier transform infrared spectra revealed the active photo constituents present in the aqueous extract of AMB involved in the bioreduction of palladium ions to PdNPs. The catalytic activity of biosynthesized PdNPs was demonstrated for the reduction of 4‐NP via electron‐relay process. Also, the influential parameters such as catalyst dosage, concentration of 4‐NP, and sodium borohydride were studied in detail. From the present study, PdNPs were found to be a potential nanocatalyst for nitro compound reduction and also for environmental remediation of wastewater effluents from industries.Inspec keywords: palladium, nanoparticles, particle size, nanofabrication, catalysis, catalysts, reduction (chemical), organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectraOther keywords: nitro compound reduction, environmental remediation, wastewater effluents, Pd, nanocatalyst, sodium borohydride, 4‐NP concentration, catalyst dosage, electron‐relay process, bioreduction, aqueous extract, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffractometry, particle size, quasispherical shape, spherical shape, crystalline shape, UV‐visible abosprtion spectra, human environment, human health, 4‐aminophenol, catalytic activity, bioreducing agent, metal nanoparticles, Actinodaphne madraspatana Bedd leaves‐mediated palladium nanoparticles, 4‐nitrophenol, catalytic reduction  相似文献   

10.
磁性壳聚糖纳米粒子可用于药物载体及废水处理吸附剂。以化学共沉淀法制备Fe3O4纳米粒子,壳聚糖先进行羧甲基化改性,再经碳二亚胺活化,包履在Fe3O4颗粒表面,透射电镜(TEM)表明,Fe3O4纳米粒子被CMC包履,粒径约10nm;X射线衍射(XRD)分析表明复合纳米粒子中磁性物质为Fe3O4;傅立叶红外光谱(FTIR)表明壳聚糖发生羧甲基反应;磁性测试表明,Fe3O4/CMC具有超顺磁性,饱和磁化强度25.73emu/g,且有良好的磁稳定性。  相似文献   

11.
化学还原法制备Fe3O4纳米颗粒及其性能研究   总被引:1,自引:0,他引:1  
冯辉霞  陈柏屹  张德懿  雒和明 《功能材料》2013,44(10):1447-1450
采用化学还原法制备得到了Fe3O4纳米颗粒,并用XRD对制备条件:分散剂种类、分散剂用量、煅烧温度、煅烧时间进行了研究。研究结果表明,当选用PEG(6000)做分散剂,PEG用量为50g/L,煅烧温度为700℃,煅烧时间为120min时,制备得到的Fe3O4纳米颗粒已经具有晶型完整的反尖晶石结构。将该样品做VSM分析,分析结果表明样品饱和磁化强度可达85A.m2/kg,并且矫顽力趋近于0,呈现出良好的顺磁性。  相似文献   

12.
In this study, size and surface effects on temperature and frequency dependent magnetic properties of superparamagnetic Fe3O4 nanoparticles in a size range of 1.1-11 nm are investigated by SPR technique. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles following lognormal proposed by Berger et al. The nanoparticles are considered as single magnetic domains with random orientations of magnetic moments and thermal fluctuations of anisotropic axes. The individual line shape function is derived from the damped precession equation of Landau-Lifshitz. Magnetic properties of the samples were strongly temperature and size dependent. The increase in SPR line width, the decrease in the resonance field and also increase in anisotropy filed by decreasing the temperature core-shell type structure of the nanoparticles and disordered magnetic structure (spin-glass like phase) of the particle surface. A linear microwave frequency dependence of the resonance field and the increase in the blocking temperature of the particles by the particle size were also observed.  相似文献   

13.
In this study, the size-uniform (5-6 nm), nearly spherical, and well-dispersed aqueous Fe3o4 magnetic nanoparticles were prepared by an improved chemical coprecipitation method. The DDAT-terminated (S-1-Dodecyl-S'-(alpha,alpha'-dimethyl-alpha"-acetic acid) trithiocarbonate) polymethacrylic (PMA-DDAT) was chosen as the apt surfactant, and the terminal DDAT can be used as a high efficient RAFT chain-transfer agent for further functionalization. Then, the functionalized Fe3O4 reacted with 4-amino-2,2,6,6-tetramethyl-piperidine-oxyl (4-NH2-TEMPO) to give the spin labeling magnetic nanoparticles. Finally, the multifunctional MNPs was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), Fourier transform infrared spectrometer (FT-IR), and vibrating-sample magnetometer (VSM). The obtained highly water-soluble, superparamagnetic, and multifunctional magnetic nanoparticles should find potential applications in biomedical research.  相似文献   

14.
O-羧甲基化壳聚糖修饰磁性Fe3O4纳米粒子及其生物应用   总被引:1,自引:0,他引:1  
采用共沉淀法制备Fe3O4纳米粒子,用XRD测定粒子成分,用透射电镜和显微镜观测粒子形貌,用震动样品磁场计测定Fe3O4粉末饱和磁化强度,再以O-羧甲基化壳聚糖修饰后,用红外光谱检测粒子成分.粒子性能良好,能很好的应用于生物分离,连接等.  相似文献   

15.
Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4   相似文献   

16.
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human‐health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.Inspec keywords: tumours, reviews, patient treatment, nanomedicine, surgery, radiation therapy, cellular biophysics, nanobiotechnology, nanoparticles, cancerOther keywords: current treatments, cancer treatment, targeted cancer therapy, cancer therapies, surface‐functionalised hybrid nanoparticles, targeted treatment, serious human‐health related problems  相似文献   

17.
刘飚  官建国  张清杰 《功能材料》2006,37(12):2001-2002,2006
以氯化亚铁为前驱物,1,2-丙二醇为还原剂,采用多元醇法意外获得Fe3O4纳米粒子.通过X射线衍射分析标定了获得样品的物相为面心立方结构的Fe3O4,用透射电镜观察了样品的形貌,颗粒形貌为球形,大小为50~70nm,反应机理的研究表明,Fe2 发生了歧化反应,反应主要向氧化的方向进行.用振动样品磁强计表征了样品的静磁性能,测得的饱和磁化强度为74.30A·m2/kg,矫顽力仅为102.68A/m,粒子具有超顺磁性.  相似文献   

18.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

19.
Montmorillonite (MMT) clay modified with lanthanum (La) ions and Fe3 O4 nanoparticles was proposed for the effective removal of phosphate ions from aqueous solution. Characterisation of the adsorbent using FTIR, SEM, XRD, XPS, XRF, BET and VSM techniques were carried out. The effects of initial phosphate concentration, contact time, dosage and pH on the phosphorus adsorption were investigated. La‐MMT/Fe3 O4 exhibited an excellent adsorption capacity of up to 14.35 mg/g, with 97.8% removal within 60 min. Langmuir isotherm model fits well with the equilibrium isotherm data, with a maximum adsorption capacity of 15.53 mg/g at room temperature. The kinetic study was well fitted with pseudo‐second‐order kinetics, and the adsorption rate was mainly controlled by liquid‐film diffusion. The manufactured adsorbent was effectively regenerated using 0.1 M NaOH solutions, with 90.18% adsorption efficiency remaining after six adsorption/desorption cycles. These results demonstrate that La‐MMT/Fe3 O4 provides an example of regenerable high‐performance adsorbents for removal of PO4 3− from wastewater.Inspec keywords: wastewater treatment, desorption, phosphorus, pH, recycling, adsorption, X‐ray diffraction, iron compounds, nanoparticles, X‐ray photoelectron spectra, clay, scanning electron microscopy, reaction kinetics theory, X‐ray fluorescence analysis, chemical engineering, chemical equilibrium, Fourier transform infrared spectra, sodium compounds, lanthanum, liquid films, diffusionOther keywords: maximum adsorption capacity, high‐performance adsorbents, recyclable adsorbents, lanthanum‐modified montmorillonite, montmorillonite clay, Langmuir isotherm model, phosphate removal, aqueous solution, FTIR spectroscopy, SEM, XRD, XPS, XRF, BET, VSM techniques, pH value, equilibrium isotherm data, pseudo second‐order kinetics, liquid‐film diffusion, adsorbent regeneration, adsorption‐desorption cycles, wastewater treatment, temperature 293.0 K to 298.0 K, time 60.0 min, NaOH, La, P  相似文献   

20.
Fe3O4纳米粒子的制备与超顺磁性   总被引:3,自引:0,他引:3  
秦润华  姜炜  刘宏英  李凤生 《功能材料》2007,38(6):902-903,907
采用红外光谱、X射线衍射、透射电子显微镜和振动样品磁强计对用化学共沉淀法制备出的纳米Fe3O4粒子进行了形貌、结构及磁性能表征.其中,红外和XRD测试结果表明制备出的Fe3O4粒子的物态和晶相结构;透射电子显微镜照片表明制备出的纳米四氧化三铁成球性好,且大部分四氧化三铁粒子的粒径在10nm左右;磁化曲线表明制备出的Fe3O4粒子无剩磁和矫顽力,具有超顺磁性.并且,将制备出的纳米Fe3O4粒子和块状Fe3O4的磁性能进行对比,探讨了Fe3O4由块状的亚铁磁性向纳米级的超顺磁性转变的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号