首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolithic glass-ceramics containing Al2O3 or TiO2 were prepared in the ZrO2-SiO2 system by the sol-gel process from metal alkoxides. Tetragonal ZrO2 was precipitated by heat treatment at 900–1200 °C and its crystal growth was increased by adding TiO2 or Al2O3. Further heating at higher temperature resulted in the precipitation of zircon and monoclinic ZrO2 which was transformed from tetragonal ZrO2. The addition of Al2O3 had less effect on both the tetragonal-to-monoclinic ZrO2 transformation and the precipitation of zircon. The fracture toughness increased as the size of tetragonal ZrO2 particles increased and then decreased with the appearance of monoclinic ZrO2 or zircon. The fracture toughness of the glass-ceramics was measured in the glass-forming regions of the ZrO2-Al2O3-SiO2 system. The fracture toughness was sensitively dependent on both Al2O3 and ZrO2 content, of which the highest value achieved was 9 MPa m1/2 for the 50ZrO2·10Al2O3·40SiO2 composition.  相似文献   

2.
The aim of this study was to investigate the effects of different nucleating agents (P2O5, TiO2 and ZrO2) on the crystallization behaviour and the properties of a parent glass with composition 23.7 Li2O–2.63 K2O–2.63 Al2O3–71.78 SiO2 (mol%) and SiO2/Li2O molar ratio far beyond that of stoichiometric lithium disilicate (LD, Li2Si2O5). The scanning electron microscopy examination of the as-cast non-annealed glasses revealed the occurrence of liquid–liquid phase separation for all the compositions. P2O5 revealed to be effective in promoting bulk crystallization of LD, while TiO2 and ZrO2 led to surface crystallization. Moreover, ZrO2 enhances the glass polymerization and shifts T p to higher temperatures, hindering crystallization. At 900 °C, TiO2-containing glasses feature LD and lithium metasilicate (LMS, Li2SiO3), while P2O5- and ZrO2-containing ones present monophasic LD and LMS glass–ceramics, respectively.  相似文献   

3.
The surface of light scattering TiO2 particles in the dye-sensitized solar cell (DSSC) was dual-coated with Al2O3 and SiO2 nanoparticles. The surface modification of the light scattering TiO2 particles was performed by a modified sol–gel method using the colloidal alumina and the colloidal silica as surface coating precursors. It was revealed that the dual-coated light scattering TiO2 particles leads to an increase in short-circuit photocurrent of DSSC device, resulting in an increase in energy conversion efficiency. This seems to be due to the increase of the light scattering by a combination of the light scattering TiO2 particles and the oxide nanoparticles such as Al2O3 and SiO2.  相似文献   

4.
This study investigates the growth behavior of atomic-layer-deposited (ALD) Al2O3 overlayers on porous TiO2 electrodes, which comprise an anatase nanoparticle layer and a rutile particle layer, for optimizing dye-sensitized solar cells. The growth mode of the ALD Al2O3 overlayers changes from island growth to layer-by-layer growth during the first few ALD reaction cycles, and the growth mode transition is much more pronounced for the anatase electrode layer. The transition is likely a result of the reduction in the contractive lattice strain of the TiO2 nanoparticles. The lattice strain in the hydroxylated TiO2 nanoparticles is progressively reduced during the ALD Al2O3 deposition, resulting in the growth mode transition.  相似文献   

5.
We have determined temperature-dependent emissivity of coatings produced from annealed mixtures of BaCO3 and TiO2 powders and ZrO2 micro- or nanoparticles. The results demonstrate that the best coatings have been obtained using ZrO2 microparticles.  相似文献   

6.
In this paper, the TiO2/Al2O3 composite nanoparticles were prepared by a hydrothermal method and in situ modified with acrylic acid. It was found that the mean particle size of modified TiO2/Al2O3 composite nanoparticles was about 80 nm with a uniform distribution by the particle size analysis. The modified TiO2/Al2O3 composite nanoparticles can disperse in lubricating oil homogenously for several weeks. The dispersion stabilization of modified TiO2/Al2O3 composite nanoparticles in lubricating oil was significantly improved in comparison with the as-prepared nanoparticles, which was due to the introduction of grafted polymers by surface modification. The formation of covalent bands was identified by Fourier transform infrared spectrum. Under an optimized concentration of 0.1 wt%, the averaged friction coefficient was reduced by 14.75%, when the modified TiO2/Al2O3 composite nanoparticles were used as lubricating oil additivities.  相似文献   

7.
In this study, the effect of active oxide fluxes with gas tungsten arc welding on the microstructure and mechanical properties of AZ31B magnesium alloy weldment was investigated. The gas tungsten arc welding process through a flux spray layer was applied to an AZ31B magnesium alloy sheet to produce a bead-on-plate specimen. Oxide (TiO2, SiO2, Fe2O3, Al2O3, and ZrO2) powders were used as the activating fluxes. The macrographs and micrographs of the weld beads were examined using an optical microscope and a scanning electron microscope. The specimens with SiO2 and Fe2O3 fluxes had high depth-to-width ratio welds, followed by those with TiO2 and ZrO2 fluxes and while that with Al2O3 flux had the low ratio weld. The use of 70?A welding current for the specimens with different fluxes produced complete penetration, whereas the specimen without any flux required a 90 A welding current to produce complete penetration. The weld bead microstructure was affected by the activating fluxes, which created different thermal effects that changed the convection direction and promoted the formation of various precipitates in the fusion zone during solidification. Three types of precipitates were found in the fusion zones, that is, a long layer-shaped TiAlMg precipitate with TiO2 flux, a spherical AlMgZn precipitate with Al2O3 flux, and an oval-shaped MgAlMn precipitate with all types of fluxes. The mechanical properties of AZ31B magnesium alloy were measured by tensile testing in the rolling direction. Fractures occurred in the fusion zone near the heat-affected zone interface of specimens welded with TiO2 flux, revealing a brittle fracture with trans-granular cleavage facets and a large number of small, bright dimples at the center. Such brittle fractures also occurred in the fusion zone of specimens welded with Al2O3, ZrO2, SiO2, and Fe2O3 fluxes. Similarly, the specimens welded with Al2O3 exhibited a brittle fracture with trans-granular facets, whereas the other specimens revealed a brittle fracture with inter-granular cleavage facets.  相似文献   

8.
La4Ti9O24 glass and La2O3–TiO2–Al2O3 and La2O3–TiO2–ZrO2 glass systems were prepared by containerless processing. The thermal stability and refractive indices of these glasses were investigated. It was found that these glasses had high refractive indices over 2.29 and high glass transition temperatures. The effects of substituting Al2O3 or ZrO2 for La2O3 or TiO2 in La4Ti9O24 glass on the refractive index is discussed by analyzing the optical parameters of the glasses. The high refractive index of these glasses was due to their large oxygen packing densities and significant electronic polarizabilities of oxygen ions. The substitution of Al2O3 and ZrO2 was effective for the refractive indices and wavelength dispersions.  相似文献   

9.
We report on structural, morphological and ordering properties of Fe2O3/TiO2 nanoparticles embedded in SiO2-based multilayers. We investigated the structure of these systems by X-ray diffraction and grazing incidence small angle X-ray scattering after post-growth annealing. We found that the presence of TiO2 promotes the growth and crystallization of the nanocrystals of Fe2O3. In multilayers containing both Fe2O3 and TiO2, crystalline nanoparticles create partially ordered three-dimensional arrays.  相似文献   

10.
This paper has focused on the potential of the SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in order to achieve the high performance one-dimensional magnetophotonic crystals (MPCs) and to overcome the problem of integration of the magneto-optical devices. Because of importance of magneto-optical Faraday effect in most non-reciprocal optical components, we have investigated the capability of such silicon-based materials for providing large Faraday rotations. We have introduced some MPC structures containing SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles and by varying the concentration of magnetic nanoparticles, influence of volume fraction VF% on the Faraday rotation and transmittance of the structures has studied.  相似文献   

11.
The glass formation abilities of various compositions in SrO–TiO2–Al2O3–SiO2, SrO–TiO2–B2O3–SiO2, SrO–TiO2–Al2O3–B2O3, and SrO–TiO2–Al2O3–SiO2–B2O3 systems were studied. Many new compositions were found to be suitable for the casting of crack-free, optically clear glasses of different color and with glass transition temperatures ranging from 595 to 775 °C. The crystallization behavior, structure, and thermal expansion behavior of selected glasses were analyzed by DTA, XRD, dilatometry, and heat treatment. The effect of P2O5 on the glass structure and crystallization behavior was also studied. P2O5 played a dual role depending on composition. In some glasses it acted as a nucleating agent while in others it suppressed crystallization. Heat treatment of borate and borosilicate glasses transformed them into glass-ceramics while comparable SrO–TiO2–Al2O3–SiO2 glasses showed a lower tendency to crystallize and form glass-ceramics under the same conditions.  相似文献   

12.
This paper presents experimental data for the density, solubility, viscosity and capillary constant for solutions of the natural refrigerant isobutane (R600a) with mineral compressor oil and nanoparticles Al2O3 and TiO2 over a wide range of temperatures and concentrations. Based on obtained information for the capillary constant, the surface tension of the solutions isobutane/mineral oil/Al2O3 nanoparticles and isobutane/mineral oil/TiO2 nanoparticles is determined. SP-QSPR (Scaling Principles–Quantitative Structure Property Relationship) model has been successfully applied for fitting the experimental data obtained for solutions of isobutane with mineral compressor oil and nanoparticles Al2O3 and TiO2. It was shown that the nanoparticle additives lead to increase of the viscosity and reduce surface tension of the refrigerant/oil solutions.  相似文献   

13.
This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient short-hot-wire technique. To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy, the short-hot-wire probes are carefully coated with a pure Al2O3 thin film. Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity, the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating. The electrical leakage of the short-hot-wire probes is frequently checked, and only those probes that are coated well are used for measurements. In the present study, the effective thermal conductivities and thermal diffusivities of Al2O3/water, ZrO2/water, TiO2/water, and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified. The average diameters of Al2O3, ZrO2, TiO2, and CuO particles are 20, 20, 40, and 33 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser, when the spherical nanoparticles are dispersed into fluids.  相似文献   

14.
Amorphous (ZrO2)x-(SiO2)1−x and (Al2O3)x-(ZrO2)y-(SiO2)1−xy composite films were prepared using r.f. unbalanced magnetron sputtering in an atmosphere of argon and oxygen at room temperature. The (ZrO2)x-(SiO2)1−x and (Al2O3)x-(ZrO2)y-(SiO2)1−xy composite films were completely oxidized when an O2/Ar flow rate ratio of 2.0 was used. The optical constants of these thin films depend linearly on the mole fraction of corresponding films. By tuning the (x, y) mole fractions of (Al2O3, ZrO2) in the (Al2O3)x-(ZrO2)y-(SiO2)1−xy composite films, the optical constants can meet the optical requirements for a high transmittance attenuated phase shift mask (HT-AttPSM) blank. The n-k values in the quadrangular area in the (x, y) plane, where x and y represent the mole fractions of Al2O3 and ZrO2, respectively, meet the optical requirements for an HT-AttPSM blank with an optimized transmittance of 20 ± 5% in ArF lithography. It is noted that the quadrangular area is bounded by (0, 0.31), (0, 0.62), (0.26, 0) and (0.57, 0). All the films also met the chemical and adhesion requirements for an HT-AttPSM application. One (Al2O3)0.1-(ZrO2)0.52-(SiO2)0.38 composite film was fabricated with optical properties that meet the optimized optical requirements of ArF-line HT-AttPSM blanks. Combined with these HT-AttPSMs, ArF-line (immersion) lithography may have the potential of reaching 65-, 45-nm and possibly the 32-nm technology nodes for the next three generations.  相似文献   

15.
《Materials Letters》2006,60(17-18):2302-2305
ZrO2–Y2O3–Al2O3 nanocrystalline powders have been synthesized using chemical coprecipitation method. Nano-powders were compacted uniaxially and densified in a muffle furnace. Densification studies showed that a fully dense pellet of ZrO2(3Y) and a 99% relative density for 5 mol% Al2O3 doped ZrO2(3Y) were obtained after sintering at 1200 °C. The presence of Al2O3 inhibits grain growth and suppresses the densification process. Full densification and the maximum microhardness of 17.8 GPa were achieved for the ZrO2(3Y)/5 mol% Al2O3 composites sintered at 1250 °C.  相似文献   

16.
Oriented eutectic microstructures have been produced in the system Al2O3/ZrO2 using a Bridgman-type crystal-growing furnace. Ingots consisted of elongated columnar grains or colonies. Inside the colonies a rod-type eutectic microstructure consisting of rods of ZrO2 surrounded by an Al2O3 matrix was observed. The eutectic point was re-established at 63 mol % Al2O3/37.0 mol % ZrO2 and 1870±5° C. Al2O3 is the first phase to nucleate when eutectic growth occurs.  相似文献   

17.
Al2O3 is a popular ceramic and has been used widely in many applications and studied in many aspects. On the other hand, zirconia-toughened alumina (ZTA) is a desirable material for engineering ceramics because of its high hardness, high wear resistance and high toughness. In the present research, Al2O3-Cr2O3-ZrO2 composites were produced by hot-pressing in order to harden the Al2O3 matrix in ZTA. Its microstructure and mechanical properties were studied by SEM, ESCA, XRD, Vickers hardness and bending strength test. It was found that addition of ZrO2 inhibited the grain growth of Al2O3-Cr2O3 and the grain growth of ZrO2 proceeded with increasing amounts of ZrO2 in the Al2O3-Cr2O3-Zr2 composite. The formation of solid solution Al2O3-Cr2O3 was also confirmed by XRD, and monoclinic ZrO2 increased on addition of Cr2O3. Maximum hardness was at Al2O3-10wt% Cr2O3 with 10 vol% ZrO2 and a stress-induced transformation was confirmed on the fracture surface of the specimen after the bending test.  相似文献   

18.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   

19.
Solid state reactions between ZrO2· SiO2 and Al2O3 in mixed powders were studied by quantitative X-ray diffraction, density measurements and qualitative EDAX. Data were obtained at temperatures ranging from 1400 to 1600° C for 5 h; the initial molar ratios of the reactants (Al2O3/ZrO2 · SiO2) varying from 0 to 5. The results indicate that: (1) ZrO2· SiO2 and Al2O3 react and form ZrO2, crystalline 3Al2O3 · 2SiO2 and a noncrystalline mullite phase; (2) the non-crystalline mullite phase is an important transitional phase towards equilibrium under subsolidus conditions. In the experimental conditions used the amount of the non-crystalline phase varies by as much as about 15%. This phase is of great importance in the mechanisms of reaction sintering between ZrO2 · SiO2 and Al2O3.  相似文献   

20.
Ion-based methods for optical thin film deposition   总被引:2,自引:0,他引:2  
The optical properties of the dielectric oxide films SiO2, Al2O3, TiO2, ZrO2, CeO2 and Ta2O5 produced by ion-based techniques have been reviewed. The influence of ion bombardment during deposition is discussed in some detail and the various production techniques are described. Recent results on the deposition and properties of diamond-like carbon films are also reviewed. Finally, some examples of the practical applications of high quality dielectric oxide films are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号