首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection with human immunodeficiency virus (HIV)‐1 causes immunological disorders and death worldwide which needs to be further assisted by novel anti‐retroviral drug delivery systems. Consequently, finding newer anti‐retroviral pharmaceuticals by using biocompatible, biodegradable nanomaterials comprising a nanoparticle as core and a therapeutic agent is of high global interest. In this experiment, a second generation of a negatively charged nano‐biopolymer linear globular G2 dendrimer was carefully conjugated and loaded with well‐known anti‐HIV drugs lamivudine and efavirenz, respectively. They were characterised by a variety of analytical methods such as Zetasizer, Fourier‐transform infrared spectroscopy, elemental analysis and liquid chromatography‐mass spectroscopy. Additionally, conjugated lamivudine and loaded efazirenz with globular PEGylated G2 dendrimer were tested on an HEK293 T cell infected by single‐cycle replicable HIV‐1 virion and evaluated using XTT test and HIV‐1 P24 protein load. The results showed that lamivudine‐conjugated G2 significantly decreased retroviral activity without any cell toxicity. This effect was more or less observed by efavirenz‐loaded G2. These nano‐constructs are strongly suggested for further in vivo anti‐HIV assays.  相似文献   

2.
A facile and green synthesis of platinum nanoparticles [gum kondagogu platinum nanoparticles (GKPtNP)] using biopolymer‐ gum kondagogu was developed. The formation of GKPtNP was confirmed by ultraviolet (UV)–visible spectroscopy, scanning electron microscopy–energy dispersive X‐ray spectroscopy, transmission electron microscopy, X‐ray diffraction, Zeta potential, Fourier transform infrared, inductively coupled plasma mass spectroscopy. The formed GKPtNP are well dispersed, homogeneous with a size of 2–4 ± 0.50 nm, having a negative zeta potential (−46.1 mV) indicating good stability. 5‐Fluorouracil (5FU) was loaded onto the synthesised GKPtNP, which leads to the development of a new combination of nanomedicine (5FU–GKPtNP). The in vitro drug release studies of 5FU–GKPtNP in pH 7.4 showed a sustained release profile over a period of 120 min. Agrobacterium tumefaciens induced in vitro potato tumour bioassay was employed for screening the anti‐tumour potentials of GKPtNP, 5FU, and 5FU–GKPtNP. The experimental results suggested a complete tumour inhibition by 5FU–GKPtNP at a lower concentration than the GKPtNP and 5FU. Furthermore, the mechanism of anti‐tumour activity was assessed by their interactions with DNA using agarose gel electrophoresis and UV‐spectroscopic analysis. The electrophoresis results revealed that the 5FU–GKPtNP totally diminishes DNA and the UV‐spectroscopic analysis showed a hyperchromic effect with red shift indicating intercalation type of binding with DNA. Over all, the present study revealed that the combined exposure of the nanoformulation resulted in the enhanced anti‐tumour effect. Inspec keywords: nanoparticles, transmission electron microscopy, biomedical materials, tumours, ultraviolet spectra, DNA, drugs, electrophoresis, polymers, platinum, pH, drug delivery systems, biochemistry, X‐ray chemical analysis, microorganisms, molecular biophysics, electrokinetic effects, X‐ray diffraction, scanning electron microscopy, cancer, nanofabrication, visible spectra, nanomedicine, Fourier transform infrared spectra, materials preparationOther keywords: 5FU–GKPtNP, 5‐fluorouracil loaded platinum nanoparticles, gum kondagogu platinum nanoparticles, antitumour activity, scanning electron microscopy‐energy dispersive X‐ray spectroscopy, biopolymer‐based platinum nanoparticles, biopolymer‐based platinum nanoparticles, ultraviolet‐visible spectroscopy, UV‐visible spectroscopy, transmission electron microscopy, X‐ray diffraction, zeta potential, Fourier transform infrared spectroscopy, inductively coupled plasma mass spectroscopy, nanomedicine, in vitro drug release studies, sustained release profile, Agrobacterium tumefaciens, in vitro potato tumour bioassay, tumour inhibition, tumour activity, agarose gel electrophoresis, UV‐spectroscopic analysis, DNA, time 120.0 min, Pt  相似文献   

3.
The therapeutics for type 2 diabetes mellitus has emerged in the current century towards nanomedicine incorporated with plant active compounds. In this study, Tinospora cordifolia loaded poly (D, L‐lactide) (PLA) nanoparticles (NPs) were evaluated in vivo for their anti‐hyperglycemic potency towards streptozotocin‐induced type 2 diabetic rats. T. cordifolia loaded PLA NPs were synthesised by the double solvent evaporation method using PLA polymer. The NPs were then characterised and administrated orally for 28 successive days to streptozotocin‐induced diabetic rats. The PLA NPs had significant anti‐diabetic effects which were equal to the existing anti‐diabetic drug glibenclamide. The antidiabetic activity is due to the synergism of compounds present in stem extract of the plant which reduced the side effects and anti‐diabetic.Inspec keywords: blood, nanofabrication, drug delivery systems, biochemistry, evaporation, nanoparticles, nanomedicine, drugs, diseases, polymers, biomedical materialsOther keywords: PLA nanoparticles, antidiabetic effects, nanoencapsulated Tinospora cordifolia, streptozotocin‐induced type 2 diabetic rats, type 2 diabetes mellitus, poly(d, l‐lactide) nanoparticles, diabetic drug glibenclamide, nanomedicine, antihyperglycemic potency, double‐solvent evaporation  相似文献   

4.
Breast cancer is a major cause of cancer mortality. Regarding the advantages of polymeric nanoparticles as drug delivery systems with targeting potential, in this study the antitumor mechanism of targeted docetaxel polymeric nanoparticles of Ecoflex® was exploited. Since the overexpression of HER‐2 receptor in breast cancer cases is associated with poor prognosis and more aggressive disease, the proposed nanoparticles were conjugated to HER‐2 specific aptamer molecules. In vitro cytotoxicity was evaluated by MTT assay. Flow‐cytometry analysis was performed to evaluate the cellular uptake of nanoparticles loaded with a fluorescent probe. Anti‐migration effects of samples were studied. Annexin IV‐FITC and propidium iodide were implemented to investigate apoptosis induction and cell cycle analysis. Enhanced cytotoxicity compared with free docetaxel was explained considering improved cellular uptake of the nanoparticles and induced apoptosis in a larger portion of cells. Lower relative migration demonstrated enhanced anti‐migration effect of nanoparticles, and cell cycle was arrested in G2/M phase using both formulations so the anti‐microtubule mechanism of the drug was not altered. Therefore, this system could offer a potential substitute for the currently marketed docetaxel formulations, which may reduce adverse effects of the drug, while further in vivo and clinical investigations are required.Inspec keywords: cancer, molecular biophysics, drug delivery systems, fluorescence, biomedical materials, drugs, tumours, nanomedicine, proteins, toxicology, biochemistry, nanoparticles, diseases, cell motility, polymersOther keywords: antitumor mechanism, targeted docetaxel polymeric nanoparticles, HER‐2 specific aptamer molecules, MTT assay, flow‐cytometry analysis, annexin IV‐FITC, apoptosis induction, cell cycle, lower relative migration, cancer mortality, drug delivery systems, aggressive disease, in vitro cytotoxicity, cellular uptake, breast cancer cell apoptosis, antimetastatic effect, HER‐2 aptamer‐targeted Ecoflex nanoparticles, antimigration effect, antimicrotubule mechanism, HER‐2 receptor, fluorescent probe, propidium iodide  相似文献   

5.
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti‐epidermal growth factor receptor monoclonal antibody (anti‐EGFR‐SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm−1 relates to Fe–O, which verified the formation of the anti‐EGFR‐Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm‐sized for nanoparticles and the anti‐EGFR‐SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non‐specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti‐EGFR‐SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.Inspec keywords: toxicology, biomedical MRI, lung, magnetic particles, biomedical materials, nanofabrication, nanomagnetics, transmission electron microscopy, nanomedicine, superparamagnetism, nanoparticles, iron compounds, proteins, cellular biophysics, molecular biophysics, cancer, tumours, Fourier transform infrared spectraOther keywords: MR imaging contrast agent, LLC1, superparamagnetic iron oxide nanoparticles, Lewis lung carcinoma cells, ex vivo conditions, cell viability, antiepidermal growth factor receptor antibody‐based iron oxide nanoparticles, antiEGFR‐SPION, lung cancer cell detection, antiepidermal growth factor receptor monoclonal antibody, cytotoxicity effects, C57BL‐6 mice, antiEGFR‐Mab, FTIR spectra, TEM, spherical shape, incubation, nanoprobe concentrations, systemic injection, Fe tumour uptake, image signal intensity, in vivo conditions, time 24.0 hour, Fe3 O4   相似文献   

6.
Pseudomonas aeruginosa lectin is purified and nanoparticle‐conjugated in an attempt to inhibit biofilm formation. Thirteen (23.6%) P. aeruginosa isolates are obtained from chicken meat samples, of which 30.8% are biofilm producers and 69.2% are lectin producers. Lectin is purified 36.8‐fold to final specific activity of 506.9 U/mg. Four nanoparticle types are prepared via laser ablation: platinum (Pt), gold (Au), silica oxide (SiO2), and tin oxide (SnO2). The four types are characterised, and pulse feeding is used to conjugate the lectin and nanoparticles. Pt, Au, SiO2, and SnO2 nanoparticles inhibit biofilm formation, especially SiO2 nanoparticles, which have higher effectiveness when conjugated with purified lectin. SiO2‐conjugated lectin significantly (p < 0.05) inhibits biofilm formation more effectively than control and other nanoparticle‐conjugated lectins. Au‐, Pt nanoparticle‐, and SnO2‐conjugated lectins inhibit biofilm significantly compared with control (p < 0.05), and rhlR gene expression is decreased in the presence of SiO2‐conjugated lectin. Furthermore, lectin and Pt, Au, SiO2 and SnO2 nanoparticles separately, and their conjugated lectins, are effective biofilm inhibitors. Of these, SiO2‐conjugated lectin was most significant as an anti‐biofilm. Moreover, virulence factors regulon and RhlR were reduced by SiO2‐conjugated lectin, indicating that this conjugation may also decrease the virulence of P. aeruginosa.  相似文献   

7.
Here, the authors report a rapid, simple, and eco‐friendly process for synthesis of Bi2 O3 nano‐needles. Dioscorea alata tuber extract was used as both reducing and capping agent for the first time. These nanoparticles were characterised by X‐ray diffraction, field emission scanning electron microscope, and Fourier transform infrared (FTIR) spectrometry, the nano‐structured Bi2 O3 needles have an average diameter of 158 nm with the lengths in the range of 1–3 μm. CLSI M27‐A2 standard was followed for evaluation of anti‐fungal activity. Bi2 O3 nano‐needles show remarkable activity against Candida albicans. It exhibits four time greater activity than bulk Bi2 O3 powder and two time greater activity than itraconazole, which makes it a potent anti‐fungal drug.Inspec keywords: bismuth compounds, nanoparticles, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectra, drugs, nanomedicine, biomedical materials, nanofabricationOther keywords: nanoneedles, antifungal activity, nanoparticles, X‐ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectrometry, CLSI M27‐A2 standard, Candida albicans, itraconazole, antifungal drug, Bi2 O3   相似文献   

8.
Pseudomonas aeruginosa is an opportunistic nosocomial pathogenic microorganism causing majority of acute hospital‐acquired infections and poses a serious public health concern. The persistence of bacterial infection can be attributed to the highly synchronised cell‐to‐cell communication phenomenon, quorum sensing (QS) which regulates the expression of a number of virulence factors and biofilm formation which eventually imparts resistance to the conventional antimicrobial therapy. In this study, the anti‐quorum sensing and anti‐biofilm potential of ferulic acid encapsulated chitosan‐tripolyphosphate nanoparticles (FANPs) was investigated against P. aeruginosa PAO1 and compared with native ferulic acid. Dynamic light scattering and transmission electron microscopic analysis confirmed the synthesis of FANPs with mean diameter of 215.55 nm. FANPs showed significant anti‐quorum sensing activity by downregulating QS‐regulated virulence factors. In addition, FANPs also significantly attenuate the swimming and swarming motility of P. aeruginosa PAO1. The anti‐biofilm efficacy of FANPs as compared to native ferulic acid was established by light and confocal laser scanning microscopic analysis. The promising results of FANPs in attenuating QS highlighted the slow and sustained release of ferulic acid at the target sites with greater efficacy suggesting its application towards the development of anti‐infective agents.Inspec keywords: microorganisms, nanofabrication, nanoparticles, nanomedicine, light scattering, cellular biophysics, drugs, antibacterial activity, drug delivery systems, filled polymers, materials preparationOther keywords: size 215.55 nm, ferulic acid encapsulated chitosan‐tripolyphosphate nanoparticles, dynamic light scattering, QS‐regulated virulence factors, cell‐to‐cell communication phenomenon, nosocomial pathogenic microorganism, anti‐quorum sensing activity, Pseudomonas aeruginosa PAO1, anti‐infective agents, confocal laser scanning microscopic analysis, anti‐biofilm efficacy, transmission electron microscopic analysis, native ferulic acid, FANPs, anti‐biofilm potential, conventional antimicrobial therapy, bacterial infection, acute hospital‐acquired infections, biofilm formation  相似文献   

9.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

10.
Nanocarriers, in various forms, have the possibility of providing endless opportunities in the area of drug delivery. The purpose of this study was formulation and evaluation of betamethasone sodium phosphate (BSP) loaded chitosan nanoparticles (CNPs) using cross‐linked chitosan malic acid derivative for better therapeutic effect. The prepared BSP loaded CNPs formulations were characterised for photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics and in‐vivo toxicity studies. Mean particle diameter of BSP loaded CNPs was about 130 nm with spherical morphology. The in‐vitro drug release study of BSP loaded CNPs showed sustained drug release for 48 h and drug release was found to follow zero order. The biochemical, haematology and histopathology reports of in‐vivo toxicity studies revealed that BSP loaded CNPs do not exhibit any toxic effect on vital organs and could be safe. The developed BSP loaded CNPs are found to be safer, and used for the treatments of highly prevalent and chronic disease like rheumatoid arthritis.Inspec keywords: nanoparticles, drug delivery systems, electrokinetic effects, toxicology, photon correlation spectroscopy, transmission electron microscopy, diseases, organic compounds, nanomedicineOther keywords: betamethasone sodium phosphate, chitosan nanoparticles, antirheumatoid activity, nanocarriers, drug delivery, cross‐linked chitosan malic acid derivative, photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics, in‐vivo toxicity, spherical morphology, rheumatoid arthritis  相似文献   

11.
Herein, the authors developed a new and potential semi‐interpenetrating polymer network (semi‐IPN) hydrogels of poly vinyl alcohol (PVA), acryl amide and diallyldimethyl ammonium chloride employing chemical cross‐linker N, N''‐methylene bisacrylamide (NNMBA) and ammonium persulphate as an initiator by radical polymerisation. To analyse the copolymer formation between two monomers and IPN cross‐linking reaction, the resulting hydrogel was characterised by Fourier transform infrared spectroscopy and the surface morphology was analysed using scanning electron microscopy. Differential scanning calorimetry and X‐ray diffraction studies were also carried out for investigating drug loading and distribution and swelling experiments were carried out for the uptake of water. In vitro release of ciprofloxacin hydrochloride from hydrogel was performed at intestinal conditions. The amount of PVA, NNMBA and total monomer concentration was found to strongly control the drug release behaviour from the hydrogels.Inspec keywords: hydrogels, polymer blends, biomedical materials, drug delivery systems, polymerisation, Fourier transform infrared spectra, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, swelling, biological organs, ammonium compoundsOther keywords: PVA‐poly(acrylamide‐co‐diallyldimethyl ammonium chloride) semiIPN hydrogels, ciprofloxacin hydrochloride drug delivery, semiinterpenetrating polymer network hydrogels, polyvinyl alcohol, acryl amide, diallyldimethyl ammonium chloride, chemical crosslinker N,N''‐methylene bisacrylamide, ammonium persulphate, radical polymerisation initiator, NNMBA, copolymer formation, IPN crosslinking reaction, Fourier transform infrared spectroscopy, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, drug loading, drug distribution, swelling, water uptake, in vitro ciprofloxacin hydrochloride release, intestinal conditions, total monomer concentration, drug release behaviour  相似文献   

12.
This study investigated synthesis and characterisation of Nano‐PLGA (poly(lactic‐co‐glycolic acid))/CO (clove‐oil) nanoparticles. The delivery of drug‐loaded nanoparticles to demineralised dentin substrates and their morphological association with a two‐step etch‐and‐rinse adhesive system was studied. The effect of Nano‐PLGA/CO pretreatment on micro‐tensile bond strength of resin‐dentin bonding was scrutinised. This study employed CO‐containing PLGA nanoparticles as a delivery vehicle for sustainable drug release inside dentinal‐tubules for potential dental applications. Emulsion evaporation resulted in uniformly distributed negatively‐charged Nano‐PLGA/Blank and Nano‐PLGA/CO nanoparticles. Scanning electron microscopy/ transmission electron microscopy revealed even spherical nanoparticles with smooth texture. High CO‐loading and encapsulation were achieved. Moreover, controlled CO‐release was evidenced after 15 days, in‐vitro and ex‐vivo. Nanoparticles exhibited low initial toxicity towards human mesenchymal stem cells with excellent antibacterial properties. Nanoparticles penetration inside dentinal‐tubules indicated a close correlation with resin‐tags. Nano‐PLGA/CO pretreatment indicated reduction in short‐term bond strength of resin‐dentin specimens. Nano‐PLGA/CO as model drug‐loaded nanoparticles showed excellent metric and antibacterial properties, low toxicity and sustained CO release. However, the loading of nanoparticles with CO up to ∼10 mg (Nano‐PLGA/CO:10) did not adversely affect short‐term bond strength values. This drug‐delivery strategy could be further expanded to deliver other pulp‐sedative agents and medications with other dental relevance.Inspec keywords: nanoparticles, dentistry, encapsulation, filled polymers, nanofabrication, nanocomposites, nanomedicine, biomedical materials, drug delivery systems, adhesives, tensile strength, biomechanics, resins, proteins, molecular biophysics, biochemistry, emulsions, evaporation, scanning electron microscopy, transmission electron microscopy, texture, cellular biophysics, antibacterial activity, bonds (chemical)Other keywords: poly(lactic‐co‐glycolic acid) encapsulated clove oil nanoparticles, dental applications, drug‐loaded nanoparticle delivery, demineralised dentin substrates, morphological association, two‐step etch‐and‐rinse adhesive system, simulated pulpal pressure, nanoPLGA‐CO pretreatment, microtensile bond strength, resin‐dentin bonded specimens, CO‐containing PLGA nanoparticles, delivery vehicle, sustainable drug release, dentinal‐tubules, potential dental applications, emulsion evaporation, uniformly‐distributed negatively‐charged nanoPLGA‐blank, scanning electron microscopy‐transmission electron microscopy, spherical nanoparticles, smooth texture, high CO‐loading, controlled CO‐release, human mesenchymal stem cells, antibacterial properties, antibiofilm properties, deep nanoparticle penetration, resin‐tags, short‐term bond strength, resin‐dentin specimens, metric properties, antibacterial properties, sustained CO release, pulp‐sedative agents, time 15 d  相似文献   

13.
This study reports an eco‐friendly‐based method for the preparation of biopolymer Ag–Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK‐(Ag–Au) NPs was confirmed by UV‐absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK‐(Ag–Au) NPs were of 1–12 nm in size. The anti‐proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real‐time polymerase chain reaction (PCR) techniques. Expression studies revealed up‐regulation of p53, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors (PPAR) PPARa and PPARb, genes and down‐regulation of Bcl‐2 and Bcl‐x(K) genes, in B16F10 cells treated with GK‐(Ag–Au) NPs confirming the anti‐proliferative properties of the nanoparticles.Inspec keywords: nanomedicine, transmission electron microscopy, genetics, cellular biophysics, molecular biophysics, enzymes, nanofabrication, gold, silver, scanning electron microscopy, nanoparticles, Fourier transform infrared spectra, atomic force microscopy, biomedical materialsOther keywords: size 1.0 nm to 12.0 nm, Ag‐Au, anti‐proliferative assessment, eco‐friendly‐based method, anti‐proliferative activity, anti‐proliferative properties, biopolymer‐based Ag–Au bimetallic nanoparticle, Cochlospermum gossypium, gum kondagogu, biopolymer preparation, biogenic synthesis, UV‐absorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, MTT assay, confocal microscopy, flow cytometry, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors, Bcl‐2 gene, Bcl‐x(K) gene, B16F10 cells  相似文献   

14.
A simple ultrasonic assisted chemical technique was used to synthesise cadmium oxide (CdO) nanoparticles (NPs) and CdO NPs/c‐Multiwalled carbon nanotube (c‐MWCNT) nanocomposite fibres.To confirm the physio‐chemico properties and to analyse surface morphology of the obtained nanomaterials X‐Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were performed. To evaluate the anti‐cancer property of CdO NPs, c‐MWCNT NPs and CdO NPs/c‐MWCNT nanocomposite fibres, an anti‐proliferative assay test (Methylthiazolyl diphenyl‐ tetrazolium bromide ‐ MTT assay) were performed on HeLa cells which further estimated IC50 value (Least concentration of sample in which nearly 50% of cells remain alive) under in‐vitro conditions. On comparison, CdONPs/c‐MWCNT based system was found to be superior by achieving 52.3% cell viability with its minimal IC50 value of 31.2 μg/ml. Lastly, the CdO NPs based system was taken up for an apoptotic study using DNA fragmentation assay for estimating its ability to cleave the DNA of the HeLa cells into internucleosomal fragments using the agarose gel electrophoresis method. In conclusion, based on our observations, CdO NPs/c‐MWCNT hybrid based system can be further used for the development of efficient drug delivery and therapeutic systems.Inspec keywords: drug delivery systems, electrophoresis, oxidation, toxicology, DNA, nanoparticles, drugs, field emission electron microscopy, scanning electron microscopy, nanofabrication, surface morphology, cancer, X‐ray diffraction, nanomedicine, cellular biophysics, filled polymers, biomedical materials, molecular biophysics, biochemistry, Fourier transform infrared spectra, multi‐wall carbon nanotubesOther keywords: c‐MWCNT nanoparticles, apoptotic study, HeLa cancer cell line, cadmium oxide nanoparticles, c‐MWCNT NPs, anti‐proliferative assay test [methyl thiazolyl diphenyl‐tetrazolium bromide assay], human epithelioid cervix carcinoma cells, live cells, CdO NP‐based system, IC50 concentration, HeLa cell line, cell deaths, CdO‐C  相似文献   

15.
This is the first study to report the green synthesis of Lobelia trigona Roxb‐ mediated silver nanoparticles (LTAgNPs). The optical and structural properties of the synthesised LTAgNPs were analysed using ultraviolet–visible spectroscopy, scanning electron microscopy, Fourier transform infrared, dynamic light scattering and energy dispersive X‐ray. LTAgNps were evaluated for their anti‐bacterial and anti‐fungal properties against 18 pathogens and exhibited significant inhibition against all the strains tested. LTAgNPs had potential scavenging effects on the DPPH, OH, O2 •− free radical scavenging assays and reducing power assay. LTAgNps possess strong anti‐cancer activity against five human cancer cell lines (A549, MCF‐7, MDA‐MB‐231, HeLa and KB) in a dose‐dependent manner. The antiproliferative, anti‐inflammatory and genotoxicity effects of LTAgNPs were further confirmed by the lactate dehydrogenase release assay, nitric oxide inhibitory assay and comet assay. Furthermore, the incision, excision and burn wound‐healing activity of formulated LTAgNPs ointment was assessed in rats. All the wounds had significant healing in groups treated with LTAgNPs ointment compared to the groups treated with the commonly prescribed ointment (SilverexTM). This study shows and suggests that the previously unreported LTAgNPs could be used as a nanomedicine with significant biological applications.Inspec keywords: molecular biophysics, biomedical materials, scanning electron microscopy, biochemistry, cancer, microorganisms, silver, cellular biophysics, nanofabrication, wounds, nanomedicine, ultraviolet spectra, toxicology, antibacterial activity, light scattering, nanoparticles, enzymes, visible spectra, Fourier transform infrared spectraOther keywords: Lobelia trigona Roxb‐based nanomedicine, biological applications, Lobelia trigona Roxb‐mediated silver nanoparticles, optical properties, structural properties, ultraviolet‐visible spectroscopy, dynamic light scattering, antibacterial properties, antifungal properties, scavenging effects, free radical scavenging, power assay, anticancer activity, antiinflammatory effects, genotoxicity effects, lactate dehydrogenase release assay, nitric oxide inhibitory assay, excision, burn wound‐healing activity, formulated LTAgNPs ointment, in vivo approach, in vitro approach, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, pathogens, strains, A549 human cancer cell lines, MCF‐7 human cancer cell lines, MDA‐MB‐231 human cancer cell lines, HeLa human cancer cell lines, antiproliferative effects, comet assay, Ag  相似文献   

16.
The purpose of this study was to design a targeted anti‐cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross‐linking method using Zn2+ ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl as cross‐linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier‐transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non‐targeted ones were studied on MCF‐7 cells which overexpress luteinizing hormone‐releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF‐7 cells compared to free DOX and non‐targeted NPs.Inspec keywords: nanoparticles, polymer blends, cancer, cellular biophysics, drug delivery systems, drugs, biomedical materials, zinc, positive ions, Fourier transform infrared spectra, nanomedicine, proteinsOther keywords: luteinizing hormone‐releasing hormone, poly(methyl vinyl ether maleic acid), doxorubicin delivery, MCF‐7 breast cancer cell, anticancer drug delivery system, doxorubicin‐loaded PVM‐MA nanoparticle, ionic cross‐linking method, zinc ion, doxorubicin‐polymer ratio effect, zinc‐polymer ratio effect, particle size, zeta potential, loading efficiency, release efficiency, chemical coating, tiptorelin‐polyallylamin conjugation, PVM‐MA nanoparticle surface, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl, cross‐linking agent, Bradford assay, Fourier transform infrared spectroscopy, cytotoxicity, LHRH receptor, SKOV3 cell, Thiazolyl blue tetrazolium bromide assay, conjugation efficiency, time 72 h, Zn2+   相似文献   

17.
To study the development, characterisation, and drug release of one‐ and two‐layered thin films based on organic polymers [poly(D,L‐lactide‐co ‐glycolide) lactide:glycolide (65:35), poly(D,L‐lactide‐co ‐glycolide) lactide:glycolide (75:25), and polycaprolactone] and dexamethasone. To examine their applicability for intraocular lenses (IOLs) and function in intraocular drug delivery systems. Four series of thin films, single and double‐layer, were prepared by the spin‐coating method on a silicon substrate. The films were studied using atomic force microscopy and spectroscopic ellipsometry. The release rate of dexamethasone was studied for a period of ten weeks. Series A and C demonstrated the formation of large dexamethasone aggregates. The monolayer films of series C and D formed pores, in agreement with previous findings. The spectroscopic ellipsometry study demonstrated that the samples were transparent. The drug release study demonstrated that dexamethasone was released during the first 6 weeks at a desirable rate. The films exhibited properties suitable for use in intraocular drug delivery systems. The single‐layer thin films demonstrated a sufficient encapsulation of dexamethasone and appropriate release of the therapeutic substance. Further studies are necessary to investigate the possibility of developing the films directly on the surface of the IOL.Inspec keywords: eye, ellipsometry, spin coating, biomedical materials, polymer films, encapsulation, atomic force microscopy, drug delivery systems, aggregation, drugs, monolayers, ophthalmic lenses, polymer blendsOther keywords: IOL, intraocular drug delivery systems, spin‐coating method, atomic force microscopy, dexamethasone aggregates, monolayer films, organic polymers, spectroscopic ellipsometry, drug release, drug‐eluting polymeric thin films, ophthalmology, one‐layered thin films, two‐layered thin films, poly(D,L‐lactide‐co‐glycolide), polycaprolactone, intraocular lenses, dexamethasone release rate, dexamethasone encapsulation, time 6.0 week, Si  相似文献   

18.
The forefront horizon of biomedical investigations in recent decades is parcelling‐up and delivery of drugs to achieve controlled/targeted release. In this regard, developing green‐based delivery systems for a spatiotemporal controlling therapeutic agent have drawn a lot of attention. A facile route based on cyclic carbonate ring‐opening reaction has been utilised to synthesise a bio‐based polyol‐containing urethane bond [polyol‐urethane (POU)] as a nanoparticulate drug delivery system of olanzapine in order to enhance its bioavailability. After characterisation, the nanoparticles were also estimated for in vitro release, toxicity, and pharmacokinetic studies. As olanzapine has shown poor bioavailability and permeability in the brain, the sustained release of olanzapine from the designed carriers could enhance pharmacokinetic effectiveness. POU in the aqueous solution formed micelles with a hydrophobic core and embedded olanzapine under the influence of its hydrophobic nature. Drug release from the nanoparticles (90 ± 0.43 nm in diameter) indicated a specific pattern with initial burst release, and then a sustained release behaviour (82 ± 3% after 168 h), by the Higuchi‐based release mechanism. Pharmacokinetics assessments of POU‐olanzapine nanoparticles were carried in male Wistar rats through intravenous administration. The obtained results paved a way to introduce the POU as an efficient platform to enhance the bioavailability of olanzapine in therapeutic methods.Inspec keywords: hydrophobicity, nanomedicine, nanofabrication, nanoparticles, drug delivery systems, biomedical materials, polymers, brainOther keywords: cyclic carbonate ring‐opening reaction, nanoparticulate drug delivery system, bioavailability, drug release, initial burst release, Higuchi‐based release mechanism, POU‐olanzapine nanoparticles, sunflower oil‐based polyol‐urethane nanoparticles, forefront horizon, biomedical investigations, green‐based delivery systems, spatiotemporal controlling therapeutic agent, bio‐based polyol‐containing urethane bond, polyol‐urethane, toxicity, pharmacokinetic studies, olanzapine, aqueous solution, micelles, hydrophobic core, Pharmacokinetics, male Wistar rats, brain  相似文献   

19.
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti‐cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti‐cancer activity is elucidated with MCF‐7 cell death. Structural characteristics of Mobil Composition of Matter ‐ 41(MCM‐41) as determined by high‐resolution transmission electron microscopy (HR‐TEM) shows that MCM‐41 size ranges from 100 to 200 nm diameters with pore size 2–10 nm for drug adsorption. The authors found 80–90% of curcumin is loaded on MCM‐41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin‐loaded MCM‐41 induced 50% mortality of MCF‐7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM‐41 effectively decreased cell survival of MCF‐7 cells in vitro.Inspec keywords: cancer, cellular biophysics, nanoparticles, nanomedicine, biomedical materials, polymers, mesoporous materials, transmission electron microscopy, drugs, adsorptionOther keywords: polyethylenimine‐modified curcumin‐loaded mesoporus silica nanoparticle, MCF‐7 cell line, breast cancer, cancer cells, drug resistance, multipotent activity, therapeutic potential, anticancer drug, mesoporous silica nanoparticle, MCF‐7 cell death, high‐resolution transmission electron microscopy, drug adsorption, curcumin‐loaded MCM‐41, nutraceutical curcumin, size 2 nm to 10 nm, size 100 nm to 200 nm  相似文献   

20.
Age‐related macular degeneration (AMD) is a disease affecting the macula by the new blood vessels formation. AMD is widely treated with a combination of anti‐angiogenic and anti‐vascular endothelial growth factor (VEGF) agents. The topical administration of nanodispersions showed enhanced ocular residence time with controlled and prolonged drug delivery to the disease site at the back of the eye. In the present study we developed and characterized nanodispersion containing anti‐angiogenic (artemisinin) and anti‐VEGF agent (dexamethasone) for the topical ocular administration in order to obtain a required drug concentration in the posterior part of the eye. The nanodispersions were prepared with varying concentration of polymer, polyvinyl pyrrolidone K90 and polymeric surfactant, Poloxamer 407. The nanodispersions were found to be smooth and spherical in shape with a size range of 12–26 nm. In‐vitro drug release studies showed the 90–101% of artemisinin and 55–103% of dexamethasone release from the nanodispersions. The blank formulation with a high concentration of polymer and polymeric surfactant showed an acceptable level of haemolysis and DNA damage. The chorioallantoic membrane assay suggested that the nanodispersion possess good anti‐angiogenic effect. Hence the formulated artemisinin and dexamethasone nanodispersion may have the great potential for the AMD treatment.Inspec keywords: drug delivery systems, drugs, eye, blood vessels, DNA, biochemistry, nanofabrication, molecular biophysics, nanomedicine, diseases, biomedical materials, polymers, membranesOther keywords: topical administration, enhanced ocular residence time, controlled prolonged drug delivery, disease site, eye, topical ocular administration, polymeric surfactant, dexamethasone release, dexamethasone nanodispersion, AMD treatment, blood vessel formation, drug concentration, in‐vitro drug release, antiangiogenic effect, artemisinin, dexamethasone loaded topical nanodispersion, age‐related macular degeneration effective treatment, antivascular endothelial growth factor agents, antiangiogenic endothelial growth factor agents, antiVEGF agent, polyvinyl pyrrolidone K90, polymer concentration, Poloxamer 407, size 12.0 nm to 26.0 nm, chorioallantoic membrane assay, DNA damage, haemolysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号