首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver nanoparticles (NPs) are immobilised on pistachio shell surface by Cichorium intybus L. leaves extract as an antioxidant media. The Fourier transform infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy equipped with energy‐dispersive X‐ray spectroscopy, and transmission electron microscope analyses confirmed the support of silver NPs on the pistachio shell (Ag NPs/pistachio shell). Ag NPs on the pistachio shell had a diameter basically in the 10–15 nm range. Reduction reactions of 4‐nitrophenol (4‐NP), and organic dyes at ambient condition were used in the investigation of the catalytic performance of the prepared catalyst. Through this research, the Ag NPs/pistachio shell shows a high activity and recyclability, and reusability without loss of its catalytic activity.Inspec keywords: transmission electron microscopy, nanoparticles, X‐ray diffraction, catalysis, nanofabrication, dyes, X‐ray chemical analysis, reduction (chemical), silver, catalysts, Fourier transform infrared spectra, field emission scanning electron microscopyOther keywords: waste pistachio shell, silver nanoparticles, catalytic reduction processes, pistachio shell surface, antioxidant media, infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscope analyses, reduction reactions, catalytic performance, catalytic activity, Cichorium intybus L. leaves extract, size 10.0 nm to 15.0 nm, Ag  相似文献   

2.
In this work, an Fe3 O4 /HZSM‐5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM‐5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT‐IR), X‐ray diffraction, field‐emission scanning electron microscopy (FESEM), energy‐dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3 O4 /HZSM‐5 surface was >70 nm. The Ag/Fe3 O4 /HZSM‐5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4‐nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.Inspec keywords: silver, X‐ray chemical analysis, X‐ray diffraction, nanocomposites, reduction (chemical), nanofabrication, nanoparticles, transmission electron microscopy, catalysts, Fourier transform infrared spectra, iron compounds, field emission scanning electron microscopy, zeolites, magnetometry, particle sizeOther keywords: Ag‐Fe3 O4 , temperature 293 K to 298 K, green synthesis, catalyst material, 4‐nitrophenol reduction, methyl orange reduction, particle size, vibrating sample magnetometry, Brunauer–Emmett–Teller method, field‐emission scanning electron microscopy, X‐ray diffraction, FT‐IR spectroscopy, silver nanoparticles, Juglans regia L. leaf extract, organic pollutant reduction, magnetically recoverable nanocomposites, energy‐dispersive spectroscopy  相似文献   

3.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

4.
The silver oxide nanoparticles (AgO2 ‐NPs) were synthesised using silver foil as a new precursor in wet chemical method. X‐ray diffraction analysis shows crystallographic structures of AgO2 ‐NPs with crystallite size of 35.54 nm well‐matched with standard cubic structure. Scanning electron microscopy analysis clearly shows the random distribution of spherical‐shaped nanoparticles. Energy dispersive X‐ray analysis confirmed the purity of the samples as it shows no impurity element. Fourier transforms infra‐red analysis confirmed the formation of AgO2 ‐NPs with the presence of Ag‐O‐Ag stretching bond. All the techniques also confirmed the loading of ceftriaxone drug on the surface of AgO2 ‐NPs. This study also described the effect of AgO2 ‐NPs having synergistic activity with β lactam antibiotic i.e. ceftriaxone against ESBL generating Escherichia coli (E. coli). Among isolated strains of E. coli, 60.0% were found to be ESBL producer. The synergistic activities of AgO2 ‐NPs with ceftriaxone suggest that these combinations are effective against MDR‐ESBL E. coli strains as evident by increase in zone sizes. The present study observed rise in MDR‐ESBL E. coli with polymorphism of blaCTXM and blaSHV causing UTI infections in Pakistani population. The antibiotic and AgO2 ‐NPs synergistic effect can be used as an efficient approach to combat uro‐pathogenic infections.Inspec keywords: antibacterial activity, nanofabrication, nanomedicine, drugs, nanoparticles, microorganisms, crystallites, scanning electron microscopy, silver compounds, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, organic compounds, geneticsOther keywords: synergistic evaluation, clinical strains, silver oxide nanoparticles, silver foil, wet chemical method, X‐ray diffraction analysis, crystallographic structures, standard cubic structure, spherical‐shaped nanoparticles, energy dispersive X‐ray analysis, ceftriaxone drug, synergistic activity, ESBL producer, scanning electron microscopy, Fourier transform infrared analysis, Escherichia coli, blaSHV gene positive ESBL, crystallite size, random distribution, β lactam antibiotics, MDR‐ESBL E. coli strains, polymorphism, blaCTXM, uro‐pathogenic infections, uro‐pathogenic E. coli, AgO2   相似文献   

5.
Biogenic synthesis of gold (Au), silver (Ag) and bimetallic alloy Au–Ag nanoparticles (NPs) from aqueous solutions using Cannabis sativa as reducing and stabilising agent has been presented in this report. Formation of NPs was monitored using UV–visible spectroscopy. Morphology of the synthesised metallic and bimetallic NPs was investigated using X‐ray diffraction and scanning electron microscopy. Elemental composition and the surface chemical state of NPs were confirmed by energy dispersive X‐ray spectroscopy analysis. Fourier transform‐infrared spectroscopy was utilised to identify the possible biomolecules responsible for the reduction and stabilisation of the NPs. Biological applicability of biosynthesised NPs was tested against five bacterial strains namely Klebsiella pneumonia, Bacillus subtilis (B. subtilis), Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (P. aeruginosa) and Leishmania major promastigotes. The results showed considerable antibacterial and anti‐leishmanial activity. The Au–Ag bimetallic NPs showed improved antibacterial activity against B. subtilis and P. aeruginosa as compared to Au and Ag alone, while maximum anti‐leishmanial activity was observed at 250 μg ml−1 NP concentration. These results suggest that biosynthesised NPs can be used as potent antibiotic and anti‐leishmanial agents.Inspec keywords: silver, silver alloys, gold, gold alloys, nanoparticles, nanofabrication, reduction (chemical), ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, microorganisms, antibacterial activityOther keywords: biogenic synthesis, Cannabis sativa leaf extract, bimetallic alloy Au–Ag nanoparticles, aqueous solutions, reducing agent, stabilising agent, UV–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, elemental composition, surface chemical state, energy dispersive X‐ray spectroscopy analysis, Fourier transform‐infrared spectroscopy, biomolecules, bacterial strains, Klebsiella pneumonia, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Leishmania major promastigotes, antibacterial activity, anti‐leishmanial activity, Ag, Au, AuAg  相似文献   

6.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

7.
An environmentally friendly and rapid procedure was developed to synthesise silver nanoparticles (Ag‐NPs) by Chamaemelum nobile extract and to evaluate its in vivo anti‐inflammatory and antioxidant activities. The ultraviolet–visible absorption spectrum of the synthesised Ag‐NPs showed an absorbance peak at 422. The average size of spherical nanoparticles was 24 nm as revealed by transmission electron microscopy. Fourier transform infra‐red spectroscopy analysis supported the presence of biological active compounds involved in the reduction of Ag ion and X‐ray diffraction confirmed the crystalline structure of the metallic Ag. The anti‐inflammatory and antioxidant activity of the Ag‐NPs was investigated against carrageenan‐induced paw oedema in mice. The levels of malondialdehyde (MDA) and antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and inflammatory cytokines tumour necrosis factor (TNF‐α), interferon gamma and interleukin (IL)‐6, IL‐1β were assessed in this respect. The results demonstrated that anti‐inflammatory activity of the Ag‐NPs might be due to the ability of the nanoparticles to reduce IL‐1β, IL‐6 and TNF‐α. Moreover, reduction of antioxidant enzymes along with an increase in MDA level shows that the anti‐inflammatory activity of the synthesised Ag‐NPs by C. nobile is attributed to its ameliorating effect on the oxidative damage.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, particle size, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, crystal structure, enzymes, molecular biophysics, tumours, biomedical materials, nanomedicineOther keywords: Chamaemelum nobile extract, oxidative stress, mice paw, silver nanoparticles, antiinflammatory activity, antioxidant activity, ultraviolet‐visible absorption spectrum, spherical nanoparticle size, transmission electron microscopy, Fourier transform infrared spectroscopy, biological active compounds, X‐ray diffraction, crystalline structure, carrageenan‐induced paw oedema, malondialdehyde, antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase, inflammatory cytokines, tumour necrosis factor, interferon gamma, interleukin, IL‐1β, IL‐6, TNF‐α, MDA level, Ag  相似文献   

8.
The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face‐centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X‐ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.Inspec keywords: antibacterial activity, nanoparticles, silver, particle size, nanofabrication, nanomedicine, biomedical materials, ultraviolet spectra, visible spectra, optical microscopy, surface plasmon resonance, transmission electron microscopy, crystallites, X‐ray diffraction, microorganismsOther keywords: Diospyros assimilis root extract assisted biosynthesised silver nanoparticles, antimicrobial activity, silver acetate, methanolic root extract, UV‐visible absorption spectrum, biologically synthesised nanoparticles, surface plasmon peak, Ag NPs formation, metal ion concentration, reaction time, microscopic analysis, spectral analysis, structural analysis, transmission electron microscopy, metallic silver, FCC crystalline phase, average crystallite size, X‐ray diffraction analysis, pathogenic strains, Ag  相似文献   

9.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

10.
A facile and green process to synthesise cuttlebone supported palladium nanoparticles (Pd NPs/cuttlebone) is reported using Conium maculatum leaf extract and in the absence of chemical solvents and hazardous materials. The antioxidant content of the C. maculatum leaf extract played a significant role in converting Pd2+ ions to Pd NPs. Various techniques were used for the characterisation of the Pd NPs/cuttlebone such as field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared and ultraviolet–visible spectroscopy. This Pd NPs/cuttlebone showed excellent catalytic activity in the reduction of 2,4‐dinitrophenylhydrazine to 2,4‐diaminophenylhydrazine by sodium borohydride as the source of hydrogen at ambient condition. The catalyst could be separated and recycled up to five cycles with no loss of its activity.Inspec keywords: catalysis, catalysts, chemical engineering, palladium, nanoparticles, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, X‐ray chemical analysis, sodium compounds, ultraviolet spectroscopy, visible spectroscopyOther keywords: catalytic reduction, 2,4‐dinitrophenylhydrazine, cuttlebone, Conium maculatum leaf extract, green process, palladium nanoparticles, antioxidant content, field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, 2,4‐diaminophenylhydrazine, sodium borohydride  相似文献   

11.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

12.
A green facile method has been successfully used for the synthesis of graphene oxide sheets decorated with silver nanoparticles (rGO/AgNPs), employing graphite oxide as a precursor of graphene oxide (GO), AgNO3 as a precursor of Ag nanoparticles (AgNPs), and geranium (Pelargonium graveolens) extract as reducing agent. Synthesis was accomplished using the weight ratios 1:1 and 1:3 GO/Ag, respectively. The synthesised nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, UV‐visible spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and thermogravimetric analysis. The results show a more uniform and homogeneous distribution of AgNPs on the surface of the GO sheets with the weight ratio 1:1 in comparison with the ratio 1:3. This eco‐friendly method provides a rGO/AgNPs nanocomposite with promising applications, such as surface enhanced Raman scattering, catalysis, biomedical material and antibacterial agent.Inspec keywords: silver, nanoparticles, graphene, nanocomposites, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, ultraviolet spectra, visible spectra, X‐ray chemical analysis, surface enhanced Raman scattering, catalysis, nanofabricationOther keywords: antibacterial agent, biomedical material, catalysis, surface enhanced Raman scattering, rGO‐AgNP nanocomposite, eco‐friendly method, homogeneous distribution, thermogravimetric analysis, energy dispersive X‐ray spectroscopy, Raman spectroscopy, UV‐visible spectroscopy, X‐ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, nanocomposites, reducing agent, geranium, graphene oxide sheets, graphite oxide, silver nanoparticles, green facile method  相似文献   

13.
In this study, an in‐situ approach was used to synthesise zinc oxide nanoparticles on the surface of cotton fabric. The effect of alkaline pre‐ and after‐treatment and Zn2+ concentration was studied on the morphological, structural, thermal, photocatalytic, and antibacterial properties of loaded cotton fabrics. Scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffractometer, thermogravimetric analysis, and attenuated total reflection Fourier transform infrared spectrometer were used to characterise the properties of loaded cotton fabrics. Alkaline after‐treatment of cotton fabric presented more dispersed zinc oxide nanoparticles, and an increase in Zn2+ concentration led to form agglomerated nanoparticles on the surface of cotton fibres. The loaded cotton fabrics with zinc oxide nanoparticles presented an inhibition zone against Staphylococcus aureus and Escherichia coli. In addition, the stain of methylene blue on the surface of loaded samples was degraded after irradiated under visible light.Inspec keywords: nanofabrication, zinc compounds, II‐VI semiconductors, nanoparticles, nanomedicine, antibacterial activity, catalysis, photochemistry, cotton fabrics, scanning electron microscopy, X‐ray chemical analysis, X‐ray diffraction, thermal analysis, attenuated total reflection, Fourier transform infrared spectroscopy, microorganisms, materials preparationOther keywords: alkaline treatment effect, in‐situ synthesised ZnO nanoparticles, alkaline pretreatment, alkaline after‐treatment, Zn2+ concentration, morphological property, structural property, thermal property, photocatalytic property, antibacterial property, loaded cotton fabrics, scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffractometer, thermogravimetric analysis, attenuated total reflection Fourier transform infrared spectrometer, agglomerated nanoparticles, zinc oxide nanoparticles, inhibition zone, Staphylococcus aureus, Escherichia coli, methylene blue, visible light, ZnO  相似文献   

14.
Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton–SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost‐effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.Inspec keywords: cotton, health care, nanoparticles, coatings, silver, fibres, nanofabrication, scanning electron microscopy, X‐ray chemical analysis, atomic emission spectroscopy, plasma applications, microorganisms, biotechnologyOther keywords: biocompatible antimicrobial cotton fibre coating, healthcare industry, bioorganic‐coated silver nanoparticle synthesis, biogenically fabricated silver nanoparticle, SNP, leaf extraction, Vitex negundo Linn, diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray spectrometry, inductively coupled plasma atomic emission spectrometry, uniformly distributed spherical agglomerate, antimicrobial assay, pathogenic bacteria, fungi, Ag  相似文献   

15.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

16.
The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco‐friendly and cost‐effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet–visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20–50 nm. The crystalline nature of the NPs was determined by X‐ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio‐inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n ‐hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green‐synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).Inspec keywords: scanning electron microscopy, toxicology, visible spectra, particle size, nanofabrication, nanomedicine, transmission electron microscopy, silver, ultraviolet spectra, differential thermal analysis, nanoparticles, X‐ray diffraction, botany, biochemistry, cellular biophysicsOther keywords: green synthesis, biological evaluation, plant‐based silver nanoparticles, reliable methods, metallic nanoparticles, eco‐friendly cost‐effective protocol, silver NPs, ultraviolet–visible spectroscopic analysis, highest absorbance peak, particle size, structure, transmission electron microscopy analysis, TEM imaging, crystalline nature, X‐ray powder diffraction patterns, differential thermal analysis, pharmacological evaluation, aqueous extracts, good cytotoxic activity, significant antioxidant activity, AgNPs exhibited good phytotoxic potential, bio‐inspired synthesis, Quercus semecarpifolia Smith aqueous leaf extract, scanning electron microscopy, thermogravimetry, crude methanolic, n‐hexane, chloroform, ethyl acetate, phytotoxic potential, haemagglutination activity, size 20.0 nm to 50.0 nm, wavelength 430.0 nm, temperature 100 degC to 1000 degC, Ag  相似文献   

17.
Superparamagnetic nanoparticles (NPs) prepared using the capping agent derived from the Lantana camara fruit extract were used to study the adsorption of chromium ions. Characterisation techniques such as scanning electron microscope, energy‐dispersive X‐ray, Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometer and thermo gravimetric analysis (TGA) were used to study the NP features and adsorption mechanisms. The maximum monolayer adsorption capacity calculated from the Langmuir isotherm was found to be 41 mg/g. The chemical nature of the adsorption is confirmed with the results of Dubinin–Radushkevich model and thermodynamic studies. In addition, thermodynamically favourable and spontaneous adsorption is considered to be a good indication for the removal of metal ions. Out of the kinetic models investigated, the experiments exhibited the best fit to pseudo‐second‐order model, advocating for surface‐based adsorption, involving both physical and chemical interactions. It is also significant to note that 85% of the adsorption occurs in the first 10 min, and hence the selected adsorbent is also claimed for rapid removal of metal ions. The newly synthesised adsorbent hence possesses remarkable properties in terms of simple synthesising technique, low cost, rapid uptake and improved efficiency without generating harmful byproducts.Inspec keywords: superparamagnetism, nanoparticles, magnetic particles, nanofabrication, nanomagnetics, adsorption, chromium, Fourier transform infrared spectra, X‐ray diffraction, X‐ray chemical analysis, magnetometry, thermodynamic propertiesOther keywords: functional group‐assisted green synthesis, superparamagnetic nanoparticles, hexavalent chromium ions, aqueous solution, Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectra, X‐ray diffraction, vibrating sample magnetometry, TGA, Dubinin‐Radushkevich model, thermodynamic model, Langmuir isotherm, monolayer adsorption capacity, surface‐based adsorption, pseudosecond‐order adsorption model, chemical interactions, physical interactions, Cr  相似文献   

18.
In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50  = 15.76 ppm and LC90  = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X‐ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50–120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco‐friendly and clean synthesis route to Ag.Inspec keywords: silver, nanofabrication, X‐ray diffraction, zoology, particle size, nanoparticles, biomedical materials, nanomedicineOther keywords: time 2.5 h, size 50 nm to 120 nm, silver nanoparticle, larvicidal property, instar larvae, Aedes aegypti, larvicidal effect, larvicidal activity performance, X‐ray diffraction, nanoparticle particle size distribution, absorption maxima, silver surface plasmon resonance peak  相似文献   

19.
Sustainable methods are needed for rapid and efficient detection of environmental and food pollutants. The Sudan group of dyes has been used extensively as adulterants in food and also are found to be polluting the soil and water bodies. There have been several methods for detection of Sudan dyes, but most of them are not practical enough for common use. In this study, the electrochemical detection efficiency and stability of gold nanoparticle (AuNPs), silver NPs and Au–Ag bionanocomposites, synthesised by peanut skin extract, modified glassy carbon electrode has been investigated. The synthesised nanomaterial samples were characterised, for their quality and quantity, using ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope and field emission scanning electron microscope. The nanomaterial hybrid electrodes showed great efficiency and stability in the detection of Sudan IV compared with the other previous electrodes. The peak current of the Sudan IV oxidation and reduction was found to be proportional to its concentration, in the range of 10–80 µM, with a detection limit of 4 µM. The hybrid electrodes showed 90% stability in detection for 20 cycles.Inspec keywords: gold, silver, nanoparticles, nanocomposites, biomedical materials, electrochemical sensors, dyes, nanofabrication, ultraviolet spectra, visible spectra, spectrophotometry, Fourier transform infrared spectra, X‐ray chemical analysis, transmission electron microscopy, scanning electron microscopy, field emission electron microscopyOther keywords: peanut skin extract mediated synthesis, gold nanoparticles, silver nanoparticles, gold–silver bionanocomposites, electrochemical Sudan IV sensing, electrochemical detection efficiency, modified glassy carbon electrode, ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope, field emission scanning electron microscope, oxidation, reduction, detection limit, Au, Ag, Au‐Ag  相似文献   

20.
The emergence of the huge number of multi‐drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV–visible spectroscopy, X‐ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high‐performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10–100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be −20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant‐related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration‐dependent manner.Inspec keywords: silver, visible spectra, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, chromatography, electrokinetic effects, cancer, biomedical materials, reduction (chemical), cellular biophysics, nanofabrication, nanoparticles, antibacterial activity, particle size, drugs, toxicology, nanomedicine, ultraviolet spectra, microorganisms, tumours, Fourier transform infrared spectraOther keywords: Syzygium cumini, biofilms, indwelling medical devices, UV‐visible spectroscopy, X‐ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, high‐performance liquid chromatography, biosynthesised particles, implant‐related medical devices, biosynthesised silver nanoparticles, multidrug resistant biofilm‐forming pathogens, multidrug resistant bacteria, MDR, bactericidal properties, morphology, scanning electron microscopy, s. cumini based NP, A594 cancer cells, tumour reduction, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号