首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

2.
The present work is emphasised on the bio‐fabrication of silver and gold nanoparticles in a single step by a microwave‐assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV–Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face‐centred cubic geometry was confirmed by the X‐ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2‐diphenyl‐1‐picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.Inspec keywords: transmission electron microscopy, visible spectra, surface plasmon resonance, nanofabrication, ultraviolet spectra, field emission electron microscopy, reduction (chemical), nanocomposites, microorganisms, nanoparticles, dyes, silver, X‐ray diffraction, nanomedicine, gold, antibacterial activity, electron diffraction, infrared spectra, particle size, Fourier transform spectra, scanning electron microscopy, catalysis, crystal growth from solutionOther keywords: synthesised nanoparticles, gold nanoparticles, catalytic activities, electron diffraction patterns, antimicrobial activities, antioxidant activities, transmission electron microscopy images, X‐ray diffraction, 2,2‐diphenyl‐1‐picrylhydrazyl assay, Synedrella nodiflora, UV–Vis spectrum, silver nanoparticles, biofabrication, surface plasmon resonance, Fourier transform infrared spectroscopy, face‐centred cubic geometry, area electron diffraction patterns, pathogenic strains, agar well diffusion method, anthropogenic pollutant dyes, Congo red, eosin Y, wavelength 413.0 nm, wavelength 535.0 nm, Au, Ag  相似文献   

3.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

4.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

5.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

6.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

7.
The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, Earliella scabrosa, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX), high‐resolution transmission electron microscopy, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its in vitro antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month. The FESEM and EDX analyses revealed the spherical‐shaped AgNPs of an average size of 20 nm and the presence of elemental Ag, respectively. The XRD pattern showed the crystalline nature of AgNPs. The FTIR spectra confirmed the conversion of Ag+ ions to AgNPs due to reduction by biomolecules of macrofungus extract. The mycosynthesised AgNPs showed effective antibacterial activity against two Gram‐positive bacteria, namely Bacillus subtilis and Staphylococcus aureus, and two Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa. The pathogens were highly sensitive to AgNPs, whereas less sensitive to AgNO3. The mycosynthesised AgNPs showed significant wound healing potential with 68.58% of wound closure.Inspec keywords: surface plasmon resonance, wounds, X‐ray diffraction, nanoparticles, molecular biophysics, nanomedicine, antibacterial activity, biomedical materials, reduction (chemical), silver, microorganisms, X‐ray chemical analysis, nanofabrication, transmission electron microscopy, particle size, field emission scanning electron microscopy, Fourier transform infrared spectraOther keywords: high‐resolution transmission electron microscopy, healing efficacy, mycosynthesised AgNPs, spherical‐shaped AgNPs, wound healing agent, in vitro antibacterial efficacy, Earliella scabrosa, silver nanoparticles, physical properties, chemical properties, therapeutical agent, aqueous extract, macrofungus, field emission scanning electron microscopy, FESEM, energy dispersive X‐ray analysis, EDX, X‐ray diffraction, XRD, Fourier transform infrared spectroscopy, FTIR spectroscopy, surface plasmon resonance peak, crystalline nature, biomolecules, Gram‐positive bacteria, Bacillus subtilis, Staphylococcus aureus, Gram‐negative bacteria, Escherichia coli, Pseudomonas aeruginosa, pathogens, wound closure, Ag  相似文献   

8.
High‐quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris. Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20–40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli, Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, colloids, particle size, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, microorganisms, nanomedicine, biomedical materialsOther keywords: Green synthesis, flower extract, Malva sylvestris, antibacterial activity, high‐quality colloidal silver nanoparticles, hydroalcoholic extracts, plant extract, reducing agents, stabilising agents, transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, UV– vis spectroscopy, colloidal solutions, particle size distribution, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, disk diffusion, minimum inhibitory concentrations, minimum bactericidal concentrations assays, ethanolic extract, size 430 nm, size 485 nm, size 504 nm, size 20 nm to 40 nm, Ag  相似文献   

9.
To eliminate the elaborate processes employed in other non‐biological‐based protocols and low cost production of silver nanoparticles (AgNPs), this study reports biogenic synthesis of AgNPs using silver salt precursor with aqueous extract of Aspergillus fumigates MA. Influence of silver precursor concentrations, concentration ratio of fungal extract and silver nitrate, contact time, reaction temperature and pH are evaluated to find their effects on AgNPs synthesis. Ultraviolet–visible spectra gave surface plasmon resonance at 420 nm for AgNPs. Fourier transform infrared spectroscopy and X‐ray diffraction techniques further confirmed the synthesis and crystalline nature of AgNPs, respectively. Transmission electron microscopy observed spherical shapes of synthesised AgNPs within the range of 3–20 nm. The AgNPs showed potent antimicrobial efficacy against various bacterial strains. Thus, the results of the current study indicate that optimisation process plays a pivotal role in the AgNPs synthesis and biogenic synthesised AgNPs might be used against bacterial pathogens; however, it necessitates clinical studies to find out their potential as antibacterial agents.Inspec keywords: nanoparticles, microorganisms, cellular biophysics, silver, antibacterial activity, pH, surface plasmon resonance, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, optimisation, nanomedicine, nanofabricationOther keywords: biogenic synthesis, optimisation, antibacterial efficacy, extracellular silver nanoparticles, fungal isolate Aspergillus fumigatus MA, nonbiological‐based protocols, silver salt precursor, fungal extract, silver nitrate, pH, ultraviolet‐visible spectra, surface plasmon resonance, Fourier transform infrared spectroscopy, X‐ray diffraction, crystalline nature, transmission electron microscopy, spherical shapes, potent antimicrobial efficacy, bacterial strains, optimisation process, bacterial pathogens, antibacterial agents, wavelength 420 nm, size 3 nm to 20 nm, Ag  相似文献   

10.
The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face‐centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X‐ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.Inspec keywords: antibacterial activity, nanoparticles, silver, particle size, nanofabrication, nanomedicine, biomedical materials, ultraviolet spectra, visible spectra, optical microscopy, surface plasmon resonance, transmission electron microscopy, crystallites, X‐ray diffraction, microorganismsOther keywords: Diospyros assimilis root extract assisted biosynthesised silver nanoparticles, antimicrobial activity, silver acetate, methanolic root extract, UV‐visible absorption spectrum, biologically synthesised nanoparticles, surface plasmon peak, Ag NPs formation, metal ion concentration, reaction time, microscopic analysis, spectral analysis, structural analysis, transmission electron microscopy, metallic silver, FCC crystalline phase, average crystallite size, X‐ray diffraction analysis, pathogenic strains, Ag  相似文献   

11.
This work explores the rapid synthesis of silver nanoparticles (AgNPs) from Musa paradisiaca (M. paradisiaca) bract extract. The bio‐reduction of Ag+ ion was recorded using ultraviolet–visible spectroscopy by a surface plasmon resonance extinction peak with an absorbance at 420 nm. The phytoconstituents responsible for the reduction of AgNPs was probed using Fourier transform infrared spectroscopy. The X‐ray diffraction pattern confirmed the formation of crystalline AgNPs that were analogous to selected area electron diffraction patterns. Morphological studies showed that the obtained AgNPs were monodispersed with an average size of 15 nm. The biologically synthesised AgNPs showed higher obstruction against tested phytopathogens. The synthesised AgNPs exhibited higher inhibitory zone against fungal pathogen Alternaria alternata and bacterial pathogen Pseudomonas syringae. Free radical scavenging potential of AgNPs was investigated using 1,1‐diphenyl‐2‐picryl hydroxyl and 2,2‐azinobis (3‐ethylbenzothiazoline)‐6‐sulphonic acid assays which revealed that the synthesised AgNPs act as a potent radical scavenger. The catalytic efficiency of the synthesised AgNPs was investigated for azo dyes, methyl orange (MO), methylene blue (MB) and reduction of o‐nitrophenol to o‐aminophenol. The results portrayed that AgNPs act as an effective nanocatalyst to degrade MO to hydrazine derivatives, MB to leucomethylene blue, and o‐nitro phenol to o‐amino phenolInspec keywords: catalysis, dyes, electron diffraction, nanofabrication, silver, catalysts, surface plasmon resonance, reduction (chemical), free radicals, nanoparticles, transmission electron microscopy, nanobiotechnology, X‐ray diffraction, microorganisms, organic compounds, Fourier transform spectra, nanomedicine, visible spectra, antibacterial activity, infrared spectra, ultraviolet spectraOther keywords: silver nanoparticles, musa paradisiaca, synergistic combating effect, free radical scavenging activity, catalytic efficiency, M. paradisiaca, bio‐reduction, ultraviolet–visible spectroscopy, surface plasmon resonance extinction peak, Fourier transform infrared spectroscopy, X‐ray diffraction pattern, selected area electron diffraction patterns, radical scavenging potential, potent radical scavenger, size 420.0 nm, size 15.0 nm, Ag+   相似文献   

12.
Silver nanoparticles (SNPs) were synthesised by using the Arial part extract of Dorema ammoniacum D. and characterised by employing UV–visible spectroscopy, Fourier transform infrared spectroscopy and X‐ray diffraction techniques. Transmission electron microscopy and field emission scanning electron microscopy were applied to investigate the morphological structure of the bio‐synthesised SNPs. The antimicrobial activity of SNPs was studied against Gram positive (Bacillus cereus and Staphylococcus aureus) and Gram‐negative (Escherichia coli and Salmonella typhimurium) bacteria by employing the disk diffusion agar process. An extremely antimicrobial effect was observed for SNPs. Utilising D. ammoniacum D. as a mediator for the synthesis of SNPs helped to save time and cost.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, particle size, antibacterial activity, visible spectra, ultraviolet spectra, microorganisms, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, surface diffusionOther keywords: green synthesis, silver nanoparticles, Dorema ammoniacum D. extract, antimicrobial analysis, Arial part extract, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, morphological structure, bio‐synthesised SNPs, antimicrobial activity, gram positive Bacillus cereus bacteria, gram positive Staphylococcus aureus bacteria, gram‐negative Escherichia coli bacteria, gram‐negative Salmonella typhimurium bacteria, disk diffusion agar process, antimicrobial effect, Ag  相似文献   

13.
In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well‐appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano‐Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synthesis of AgNCs was accomplished by utilizing the leaf extract of Salacia mulbarica (SM). The preparation of SM‐AgNCs was developed by estimating surface plasmon resonance peak around 449 nm by using a UV–Visible spectrophotometer. The effect of phytochemicals in SM leaf extract on the development of stable SM‐AgNCs was confirmed by FTIR spectroscopy. The size of the fabricated SM‐AgNCs was estimated by dynamic light scattering and zeta‐sizer analysis and the morphology of the SM‐AgNCs was examined by transmission electron microscopy. The presence of clusters of Ag particles in the prepared SM‐AgNCs was recognized by energy dispersion X‐ray analysis. The results show that saponins, phytosterols, and phenolic compounds present in plant extract may play a great part in developing the SM‐AgNCs in their specialized particles. The succeeded SM‐AgNCs shows incredible anti‐bacterial action towards Escherichia coli and Bacillus subtilis. In‐light of the antibacterial study, these SM‐AgNCs were analyzed with calf thymus‐DNA and found significant damage to the strand of thymus‐DNA.Inspec keywords: visible spectra, surface plasmon resonance, transmission electron microscopy, DNA, nanofabrication, particle size, X‐ray chemical analysis, ultraviolet spectra, molecular biophysics, nanomedicine, microorganisms, nanoparticles, silver, X‐ray diffraction, antibacterial activity, Fourier transform infrared spectra, biomedical materialsOther keywords: stable SM‐AgNCs, silver nanoparticles, ct‐DNA damage, metallic nanoparticles, silver nanoclusters, Salacia mulbarica leaf extract, reactive oxygen species, DNA fragmentation, surface plasmon resonance, UV‐Visible spectrophotometer, Fourier transform infrared spectroscopy, dynamic light scattering, Zeta‐sizer analysis, transmission electron microscopy, energy dispersive X‐ray analysis, saponins, phytosterols, phenolic compounds, plant extract, Escherichia coli, Bacillus subtilis, Ag  相似文献   

14.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

15.
The biosynthesis of nanoparticles (NPs) from plant extracts is important in nanotechnology because the employed methods are environmentally friendly and cost‐effective. In this study, silver NPs (AgNPs) were synthesised using Chinese tea (Oolong tea) extract. The effects of the relative content of the employed silver nitrate, the reaction temperature, the incubation time, and the tea‐to‐water ratio on the formation of the AgNPs were examined. The synthesised AgNPs were also analysed by UV–vis spectroscopy, dynamic light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and thermo‐gravimetric analysis. The NPs were observed to be highly crystalline, approximately spherical, and 10–50 nm in diameter. They were also tested for their use in preserving the postharvest quality of cherry tomatoes, with good results obtained. The tea AgNP treatment was specifically found to reduce the weight loss of the tomatoes, as well as changes in their total soluble solids, vitamin C, and titratable acid contents. The findings of this study indicate that postharvest tea AgNP treatment affords a clean, safe, high‐quality, and environmentally friendly method for extending the shelf life of fruits.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, thermal analysisOther keywords: silver nanoparticles, tea leaf extracts, fruit shelf life, Chinese tea extract, Oolong tea, silver nitrate, reaction temperature, incubation time, tea‐water ratio, UV‐vis spectroscopy, dynamic light scattering, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, thermo‐gravimetric analysis, cherry tomatoes, Ag  相似文献   

16.
In this study, the authors reported the first synthesis process of silver iodide (AgI) nanoparticles (NPs) by pulsed laser ablation of the AgI target in deionised distilled water. The optical and structural properties of AgI NPs were investigated by using UV–vis absorption, X‐ray diffraction, scanning electron microscope (SEM), energy dispersive X‐ray, Fourier transform infrared spectroscopy, and transmission electron microscope (TEM). The optical data showed the presence of plasmon peak at 434 nm and the optical bandgap was found to be 2.6 eV at room temperature. SEM results confirm the agglomeration and aggregation of synthesised AgI NPs. TEM investigation showed that AgI NPs have a spherical shape and the average particle size was around 20 nm. The particle size distribution was the Gaussian type. The results showed that the synthesised AgI NPs have antibacterial activities against both bacterial strains and the activities were more potent against gram‐negative bacteria.Inspec keywords: antibacterial activity, nanoparticles, X‐ray chemical analysis, particle size, transmission electron microscopy, X‐ray diffraction, nanofabrication, scanning electron microscopy, visible spectra, ultraviolet spectra, silver compounds, pulsed laser deposition, Fourier transform infrared spectra, optical constants, energy gap, aggregationOther keywords: synthesis process, pulsed laser ablation, AgI target, deionised distilled water, optical properties, structural properties, UV–vis absorption, X‐ray diffraction, transmission electron microscope, optical data, optical bandgap, antibacterial activities, silver iodide nanoparticles, energy dispersive X‐ray analysis, SEM, wavelength 434.0 nm, temperature 293 K to 298 K, AgI  相似文献   

17.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

18.
In this study, the conversion of silver ions into ∼30.74 nm sized silver nanoparticles (AgNPs) was achieved in 30 min at a reaction temperature of 80–90°C in aqueous leaf extract of Artemisia afra. The synthesised AgNPs showed surface plasmon resonance in the range of 423–438 nm. Spherical and face‐centred cubic nanoparticles were confirmed by transmission electron microscope (TEM) and X‐ray diffraction (XRD) analysis, respectively. Fourier transform infra‐red (FTIR) results indicated that the obtained nanoparticles were stabilised and capped through the carbonyl and carboxylate ion groups possibly from flavonoids, terpenoids, phenolics and esters content of the extracts. In addition, the AgNPs were assessed for their biological potentials against some microbes and, also, their free radical scavenging ability was established. The AgNPs exhibited interesting antimicrobial and antioxidant properties better than the aqueous extract of A. afra. Inspec keywords: silver, transmission electron microscopy, ultraviolet spectra, visible spectra, surface plasmon resonance, antibacterial activity, X‐ray diffraction, microorganisms, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: silver nanoparticles, reaction temperature, surface plasmon resonance, face‐centred cubic nanoparticles, antioxidant properties, silver ion conversion, aqueous leaf extract, carboxylate ion group, antimicrobial properties, Artemisia afra, spherical nanoparticles, TEM, XRD, FTIR spectra, Ag, temperature 80 degC to 90 degC, time 30.0 min, free radical scavenging, esters, phenolics, terpenoids, flavonoids, carbonyl ion group  相似文献   

19.
Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1‐ Caryota urens, GNP2‐Pongamia glabra, GNP3‐ Hamelia patens, GNP4‐Thevetia peruviana, GNP5‐Calendula officinalis, GNP6‐Tectona grandis, GNP7‐Ficus petiolaris, GNP8‐ Ficus busking, GNP9‐ Juniper communis, GNP10‐Bauhinia purpurea). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV‐vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction and Image J software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.Inspec keywords: silver, nanoparticles, antibacterial activity, nanofabrication, microorganisms, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, proteins, DNA, nanomedicine, biomedical materials, cellular biophysicsOther keywords: biofabrication, broad range antibacterial nanoparticles, antibiofilm silver nanoparticles, plant extract contribution, drug resistant microbes, UV‐vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, Image J software, resistant strains, susceptible strains, Gram positive bacteria, fungus, protein leakage assays, carbohydrate leakage assays, cell lysis, DNA damage, Ag  相似文献   

20.
In this study, extracellular extract of plant growth promoting bacterium, Nitrobacter sp. is used for the bioconversion of AgNO3 (silver nitrate) into Ag2 O (silver oxide nanoparticles). It is an easy, ecofriendly and single step method for Ag2 O NPs synthesis. The bio‐synthesized nanoparticles were characterized using different techniques. UV‐Vis results showed the maximum absorbance around 450 nm. XRD result shows the particles to have faced centered cubic (fcc) crystalline nature. FTIR analysis reveals the functional groups that are involved in bioconversion such as C–N, N–H and C=O. Energy‐dispersive X‐ray spectroscopy (EDAX) spectrum confirms that the prepared nanoparticle is Ag2 O NPs. Particle size distribution result reveals that the average particle size is around 40 nm. The synthesized Ag2 O NPs found to be almost spherical in shape. Biosynthesized Ag2 O NPs possess good antibacterial activity against selected Gram positive and Gram negative bacterial strains namely Salmonella typhimurium, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae when compared to standard antibiotic. In addition, Ag2 O NPs exhibits excellent free radical scavenging activity with respect to dosage. Thus, this study is a new approach to use soil bacterial extract for the production of Ag2 O NPs for biomedical application.Inspec keywords: nanomedicine, nanoparticles, silver compounds, antibacterial activity, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, particle size, free radicalsOther keywords: free radical scavenging activity, Ag2 O, AgNO3 , Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Gram negative bacterial strains, Gram positive bacterial strains, particle size distribution, energy‐dispersive X‐ray spectroscopy spectrum, functional groups, Fourier transform infrared analysis, faced centred cubic crystalline nature, XRD, UV‐Vis results, bio‐synthesised nanoparticles, silver oxide nanoparticles, silver nitrate bioconversion, plant growth promoting bacterium, extracellular extract, biomedical application, antibacterial potential, antioxidant potential, Ag2 O NPs, extract mediated biosynthesis, Nitrobacter sp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号