首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A brain tumour is amongst most devastating and challenging condition to overcome with suitable treatment as the drug has to cross the blood–brain barrier (BBB) with several physiological barriers like opsonisation by the reticuloendothelial system. Presently various techniques such as surgical, chemotherapeutic agents, and radiotherapy techniques have performed to extend the lifespan of patients diagnosed with glioblastoma, which did not maximise the overall survival of patients with a tumour. Nanotechnology is relied upon to diminish the requirement for intrusive methods for conveyance of therapeutics to the central nervous system. Colloidal nanocarriers sizing range 1–1000 nm have been utilised to cross BBB delivers the drug at cell levels with enhanced bioavailability and reduced toxicity. However, solid lipid nanoparticles (SLNs) are considered a highly flexible carrier for more successful remedially in brain tumour. The treatment of a brain tumour via SLNs is gaining greater potency due to its inimitable size and lipidic nature. This review focuses and represents the current strategies of SLNs in the brain tumour treatment with appropriate techniques adopted are highlighted. Based on this review, the authors concluded that SLNs embrace exclusive promising lipidic nanocarrier that could be utilised to target a brain tumour effectively.Inspec keywords: brain, cancer, nanoparticles, blood, molecular biophysics, tumours, nanomedicine, neurophysiology, radiation therapy, colloids, biomedical materials, drug delivery systems, nanofabrication, drugs, cellular biophysicsOther keywords: chemotherapeutic agents, radiotherapy techniques, central nervous system, colloidal nanocarriers sizing range 1–1000 nm, BBB, drug, solid lipid nanoparticles, brain tumour therapeutical uses, lipidic nature, brain tumour treatment, brain targeted delivery, anticancer drugs, prospective approach, blood–brain barrier, physiological barriers, reticuloendothelial system, surgical agents, lipidic nanocarrier, size 1.0 nm to 1000.0 nm  相似文献   

2.
Circulating tumour cells (CTCs) are active participants in the metastasis process and account for ∼90% of all cancer deaths. As CTCs are admixed with a very large amount of erythrocytes, leukocytes, and platelets in blood, CTCs are very rare, making their isolation, capture, and detection a major technological challenge. Microfluidic technologies have opened‐up new opportunities for the screening of blood samples and the detection of CTCs or other important cancer biomarker‐proteins. In this study, the authors have reviewed the most recent developments in microfluidic devices for cells/biomarkers manipulation and detection, focusing their attention on immunomagnetic‐affinity‐based devices, dielectrophoresis‐based devices, surface‐plasmon‐resonance microfluidic sensors, and quantum‐dots‐based sensors.Inspec keywords: microfluidics, bioMEMS, cancer, cellular biophysics, biomedical equipment, patient diagnosis, tumours, proteins, molecular biophysics, electrophoresis, surface plasmon resonance, quantum dotsOther keywords: quantum‐dot‐based sensors, surface‐plasmon‐resonance microfluidic sensors, dielectrophoresis‐based devices, immunomagnetic‐affinity‐based devices, cancer biomarker‐proteins, CTC detection, blood samples, microfluidic technology, platelets, leukocytes, leukocytes, erythrocytes, cancer deaths, metastasis process, circulating tumour cells, cancer cell‐biomarker detection, cancer cell‐biomarker manipulation, microfluidic devices  相似文献   

3.
Azo dyes are widely used in industries and their release in the environment contributes to the pollution of effluents. The authors aim to develop a new eco‐friendly water treatment method for the degradation of azo dyes based on in situ magnetic separation and immobilisation of bacterial cells. The immobilisation was achieved using superparamagnetic Fe3 O4 nanoparticles and offers the possibility of reusing bacteria by magnetic separation for several degradation cycles. The iron oxide nanoparticles were synthesised by reverse co‐precipitation. The Gram‐positive bacteria Bacillus subtilis were immobilised using iron–oxide nanoparticles by adsorption and then separated with an external magnetic field. Transmission electron microscopy observation showed that the particles'' diameter was ∼20 nm with a narrow size distribution. Moreover, the iron–oxide nanoparticles were adsorbed onto the surface in order to coat the cells. B. subtilis has proved its ability to decolorise and degrade several azo dyes at different values of pH, with the highest decolorisation rate for Congo red. Furthermore, immobilised cells have a degradation activity similar to that of free cells. The system provided a degradation rate up to 80% and could be reused for seven batch cycles.Inspec keywords: biotechnology, microorganisms, pH, adsorption, iron compounds, superparamagnetism, transmission electron microscopy, ultraviolet spectra, chemical technology, wastewater treatment, effluents, dyes, magnetic separation, iron, magnetic particles, decontaminationOther keywords: degradation rate, immobilisation, magnetic nanoparticles, azo dyes, eco‐friendly water treatment method, degradation cycles, Gram‐positive bacteria, iron–oxide nanoparticles, external magnetic field, immobilised cells, degradation activity, magnetic separation, effluents, bacterial cells, Fe3 O4   相似文献   

4.
To effective capture and universal enrichment of His‐tagged protein, polyacrylic acid (PAA) brushes were used to encapsulate Fe3 O4 nanoparticles, connect NTA, and Ni2+ to prepare magnetic beads. These materials provide many advantages, such as excellent stability, tuneable particle size, and a surface for further functionalisation with biomolecules. His‐tagged green fluorescence protein (GFP) was separated efficiently, and the binding capacity of Fe3 O4 /MPS@PAA/NTA‐Ni2+ was 93.4 mg/g. Compared with High‐Affinity Ni‐NTA Resin and Ni‐NTA Magnetic Agarose Beads, Fe3 O4 /MPS@PAA/NTA‐Ni2+ nanocomposites exhibited higher separation efficiency and binding capacity towards His‐tagged GFP. Moreover, the selectivity and recyclability of them for the target proteins were maintained well after six cycles. This study would widen the application of PAA in constructing multifunctional nanocomposites for biomedical fields.Inspec keywords: polymers, proteins, nickel, particle size, biochemistry, resins, nanocomposites, molecular biophysics, nanofabrication, separation, nanoparticles, encapsulation, iron compounds, nanomedicine, biomedical materials, nanomagneticsOther keywords: polyacrylic acid brushes, His‐tagged green fluorescence protein, binding capacity, separation efficiency, His‐tagged GFP, target proteins, Ni‐NTA magnetic agarose beads, nanoparticles, biomolecules, high‐affinity Ni‐NTA resin, nanocomposites, particle size, Fe3 O4 ‐Ni  相似文献   

5.
This study develops an integrated model of the p53–Mdm2 interaction composed of five basic components and time delay in the DNA damage response based on the existing research work. Some critical factors, including time delay, system parameters, and their interactions in the p53–Mdm2 system are investigated to examine their effects on the oscillatory behaviour induced by Hopf bifurcation. It is shown that the positive feedback formed between p53 and the activity of Mdm2 in the cytoplasm can cause a slight decrease in the amplitude of the p53 oscillation. The length of the time delay plays an important role in determining the amplitude and period of the oscillation and can significantly extend the parameter range for the system to demonstrate oscillatory behaviour. The numerical simulation results are found to be in good agreement with the published experimental observation. It is expected that the results of this research would be helpful to better understand the biological functions of p53 pathway and provide some clues in the treatment of cancer.Inspec keywords: numerical analysis, physiological models, molecular biophysics, feedback, DNA, bifurcation, proteins, delays, cancer, oscillations, cellular biophysicsOther keywords: Hopf bifurcation‐induced oscillations, p53–Mdm2 feedback mechanism, integrated model, p53–Mdm2 interaction, basic components, time delay, DNA damage response, existing research work, critical factors, system parameters, p53–Mdm2 system, oscillatory behaviour, positive feedback, parameter range  相似文献   

6.
The development of specific and sensitive immunomagnetic cell separation nanotechnologies is central to enhancing the diagnostic relevance of circulating tumor cells (CTCs) and improving cancer patient outcomes. The limited number of specific biomarkers used to enrich a phenotypically diverse set of CTCs from liquid biopsies has limited CTC yields and purity. The ultra-high molecular weight mucin, mucin16 (MUC16) is shown to physically shield key membrane proteins responsible for activating immune responses against ovarian cancer cells and may interfere with the binding of magnetic nanoparticles to popular immunomagnetic cell capture antigens. MUC16 is expressed in ≈90% of ovarian cancers and is almost universal in High Grade Serous Epithelial Ovarian Cancer. This work demonstrates that cell bound MUC16 is an effective target for rapid immunomagnetic extraction of expressor cells with near quantitative yield, high purity and viability from serum. The results provide a mechanistic insight into the effects of nanoparticle physical properties and immunomagnetic labeling on the efficiency of immunomagnetic cell isolation. The growth of these cells has also been studied after separation, demonstrating that nanoparticle size impacts cell-particle behavior and growth rate. These results present the successful isolation of “masked” CTCs enabling new strategies for the detection of cancer recurrence and select and monitor chemotherapy.  相似文献   

7.
Gold nanoparticles (AuNPs) possess colourful light‐scattering properties due to different composition, size and shape. Their unique physical, optical and chemical properties coupled with advantages, have increased the scope of anisotropic AuNPs in various fields. This study reports a green methodology developed for the synthesis of anisotropic AuNPs. The aqueous extracts of Alternanthera sessilis (PGK), Portulaca oleracea (PAK) and Sterculia foetida (SF) with gold ions produced violet, purple and pink coloured AuNPs, respectively, under sonication and room temperature methods revealing the formation of different shapes of AuNPs. The results of TEM analysis of AuNPs confirmed the formation of triangular plate AuNPs of the size 35 nm for PAK extract. Spherical‐shaped AuNPs (10–20 nm) were obtained using an extract of PGK. SF extract produced rod, hexagon, pentagon‐shaped AuNPs and nanorice gold particles. The cell viability studies of the PGK, PAK and SF‐mediated AuNPs on MCF‐7 cell lines by MTT assay revealed the cytotoxic activity of AuNPs to depend on the size, shape and the nature of capping agents. The synthesised AuNPs significantly inhibited the growth of cancer cells (MCF‐7) in a concentration‐dependent manner. The size and shape of these anisotropic AuNPs also reveal its potency to be used as sensors, catalysis, photothermal and therapeutic agents.Inspec keywords: toxicology, gold, transmission electron microscopy, catalysis, nanofabrication, biomedical materials, nanomedicine, particle size, cellular biophysics, nanoparticles, cancer, biological organsOther keywords: Au, size 10.0 nm to 20.0 nm, temperature 293.0 K to 298.0 K, size 35.0 nm, TEM analysis, Sterculia foetida, Portulaca oleracea, Alternanthera sessilis, chemical properties, colourful light‐scattering properties, anisotropic AuNP, triangular plate AuNP, spherical‐shaped AuNP, SF‐mediated AuNP, cancer cells, MCF‐7 cell lines, cell viability, nanorice gold particles, gold ions, optical properties, breast cancer cell lines, anisotropic gold nanoparticles  相似文献   

8.
Lead (Pb) ions are a major concern to the environment and human health as they are contemplated cumulative poisons. In this study, facile synthesis of magnetic iron oxide–tea waste nanocomposite is reported for adsorptive removal of lead ions from aqueous solutions and easy magnetic separation of the adsorbent afterwards. The samples were characterised by scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, and Braunner–Emmet–Teller nitrogen adsorption study. Adsorptive removal of Pb(II) ions from aqueous solution was followed by ultraviolet–visible (UV–Vis) spectrophotometry. About 95% Pb(II) ion removal is achieved with the magnetic tea waste within 10 min. A coefficient of regression R 2  ≃ 0.99 and adsorption density of 18.83 mg g−1 was found when Pb(II) ions were removed from aqueous solution using magnetic tea waste. The removal of Pb(II) ions follows the pseudo‐second‐order rate kinetics. External mass transfer principally regulates the rate‐limiting phenomena of adsorption of Pb(II) ions on iron oxide–tea waste surface. The results strongly imply that magnetic tea waste has promising potential as an economic and excellent adsorbent for the removal of Pb(II) from water.Inspec keywords: visible spectra, scanning electron microscopy, mass transfer, ultraviolet spectra, X‐ray diffraction, nanocomposites, lead, adsorption, magnetic separation, iron compounds, nanofabrication, Fourier transform infrared spectraOther keywords: FeO, Pb, time 10.0 min, X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscopy, adsorbent, magnetic separation, rapid removal, Braunner–Emmet–Teller nitrogen adsorption, iron oxide–tea waste surface, magnetic tea waste, aqueous solution, adsorptive removal, magnetic iron oxide–tea waste nanocomposite, lead(II) ions  相似文献   

9.
In order to expand the application in the medical field and enhance pharmacological effects, casein–myricetin nanomicelles were prepared by the self‐assembly method and characterised by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. The parameters in self‐assembly were optimised according to the factors of particle size, encapsulation yield, and drug loading. The result showed a pH of 5.5, a casein concentration of 2 mg/ml, a mass ratio of casein to myricetin of 8:1, ultrasonic power of 300 W, ultrasonic time of 5 min and ethanol volume of 7 ml were the optimal conditions. The situ cycle intestinal perfusion methods indicated that casein–myricetin nanomicelles can be more easily absorbed by small intestine than myricetin standard sample. Therefore, casein micelles are effective for improving the water solubility of myricetin.Inspec keywords: encapsulation, nanoparticles, nanomedicine, drugs, nanofabrication, biomedical materials, solubility, molecular biophysics, ultraviolet spectra, drug delivery systems, particle size, pH, visible spectra, colloids, self‐assembly, Fourier transform infrared spectraOther keywords: casein–myricetin nanomicelles, self‐assembly method, ultraviolet–visible spectroscopy, casein concentration, myricetin standard sample, casein micelles, medical field, pharmacological effects, Fourier transform infrared spectroscopy, particle size, pH, ultrasonic power, ethanol volume, water solubility, power 300.0 W, time 5.0 min  相似文献   

10.
Nasopharyngeal carcinoma (NPC), a kind of squamous cell carcinoma, occurs in the top and the side wall of nasopharyngeal, which harms human health and life. In this study, a novel blood test (SERS) was carried out for 30 NPC patients and 30 normal ones. Using multi‐variate statistical analysis for spectral data, the diagnostic sensitivities of 89.3% (50/56) and 85.7% (48/56) can be achieved for 633 and 785 nm exciting wavelength, respectively. Also corresponding specificities are 71.4% (41/56) and 78.6% (44/56), respectively. These results demonstrated that the two kinds of excitation wavelength all have the feasibility of obtaining high‐quality SERS spectra to differentiate cancer from normal samples. Furthermore, the performance of the SERS test with 785 nm wavelength excitation is nearly equal to the SERS experimental effect under 633 nm wavelength excitation for NPC detection.Inspec keywords: statistical analysis, blood, cancer, patient diagnosis, tumours, surface enhanced Raman scatteringOther keywords: human blood test, surface‐enhanced Raman spectroscopy technology, nasopharyngeal cancer detection, nasopharyngeal carcinoma, squamous cell carcinoma, human health, multivariate statistical analysis, spectral data, diagnostic sensitivities, excitation wavelength, high‐quality SERS spectra, normal samples, SERS test, SERS experimental effect, NPC detection, excitation light, NPC patients, wavelength excitation, wavelength 633.0 nm, wavelength 785.0 nm  相似文献   

11.
An extracellular biosynthesis method has been developed to prepare cadmium selenide (CdSe) quantum dots (QDs) with strong fluorescence emission by incubating cheap Cd and Se inorganic salts with Escherichia coli (E.coli) bacteria. Ultraviolet–visible absorption spectra, photoluminescence (PL) spectra, and high‐resolution transmission electron microscopy analysis showed that the biosynthesised CdSe QDs have an average size of 3.1 nm, the excellent optical properties with fluorescence emission around 494 nm, and the good crystallinity. It was found that addition of 80 mg of mercaptosuccinic acid resulted in the formation of CdSe QDs with highest PL intensity. Furthermore, Fourier‐transform infrared spectra of as‐synthesised CdSe QDs confirmed the presence of a surface protein capping layer. The biosynthesised CdSe QDs were incorporated into the yeast cells as illustrated by laser confocal scanning microscopy images, showing a great potential in bio‐imaging and bio‐labelling application.Inspec keywords: microorganisms, molecular biophysics, fluorescence, visible spectra, nanofabrication, nanobiotechnology, proteins, cellular biophysics, nanostructured materials, wide band gap semiconductors, cadmium compounds, semiconductor quantum dots, II‐VI semiconductors, transmission electron microscopy, photoluminescence, optical microscopy, ultraviolet spectra, Fourier transform infrared spectra, biological techniques, semiconductor growthOther keywords: biocompatible CdSe quantum dots, extracellular biosynthesis method, cadmium selenide quantum dots, high‐resolution transmission electron microscopy analysis, biosynthesised CdSe QDs, Fourier‐transform infrared spectra, Escherichia coli, ultraviolet‐visible absorption spectra, PL intensity, fluorescence emission, photoluminescence spectra, optical properties, surface protein capping layer, laser confocal scanning microscopy images, bioimaging, biolabelling application, yeast cells, f mercaptosuccinic acid, CdSe  相似文献   

12.
Age‐related macular degeneration (AMD) is a disease affecting the macula by the new blood vessels formation. AMD is widely treated with a combination of anti‐angiogenic and anti‐vascular endothelial growth factor (VEGF) agents. The topical administration of nanodispersions showed enhanced ocular residence time with controlled and prolonged drug delivery to the disease site at the back of the eye. In the present study we developed and characterized nanodispersion containing anti‐angiogenic (artemisinin) and anti‐VEGF agent (dexamethasone) for the topical ocular administration in order to obtain a required drug concentration in the posterior part of the eye. The nanodispersions were prepared with varying concentration of polymer, polyvinyl pyrrolidone K90 and polymeric surfactant, Poloxamer 407. The nanodispersions were found to be smooth and spherical in shape with a size range of 12–26 nm. In‐vitro drug release studies showed the 90–101% of artemisinin and 55–103% of dexamethasone release from the nanodispersions. The blank formulation with a high concentration of polymer and polymeric surfactant showed an acceptable level of haemolysis and DNA damage. The chorioallantoic membrane assay suggested that the nanodispersion possess good anti‐angiogenic effect. Hence the formulated artemisinin and dexamethasone nanodispersion may have the great potential for the AMD treatment.Inspec keywords: drug delivery systems, drugs, eye, blood vessels, DNA, biochemistry, nanofabrication, molecular biophysics, nanomedicine, diseases, biomedical materials, polymers, membranesOther keywords: topical administration, enhanced ocular residence time, controlled prolonged drug delivery, disease site, eye, topical ocular administration, polymeric surfactant, dexamethasone release, dexamethasone nanodispersion, AMD treatment, blood vessel formation, drug concentration, in‐vitro drug release, antiangiogenic effect, artemisinin, dexamethasone loaded topical nanodispersion, age‐related macular degeneration effective treatment, antivascular endothelial growth factor agents, antiangiogenic endothelial growth factor agents, antiVEGF agent, polyvinyl pyrrolidone K90, polymer concentration, Poloxamer 407, size 12.0 nm to 26.0 nm, chorioallantoic membrane assay, DNA damage, haemolysis  相似文献   

13.
Nanomaterials synthesis using natural sources is the technology to up come with advanced materials through extracts of plant, microorganisms, poultry waste etc. In this study, the authors report the synthesis of porous carbon nanotubes using high‐temperature decomposition technique facilitated by cobalt salt using chicken fats, a poultry waste as a precursor. Since chicken fats contain fatty acids which can decompose into short hydrocarbon chains and cobalt can act as the catalyst. The formation of carbon nanotubes was confirmed by Raman spectra, peaks at 1580 and 1350.46 cm−1 confirmed the graphite mode G‐band and structural imperfections defect mode D‐band, respectively. Transmission electron microscopy showed the formation of tube‐like structures. Nitrogen adsorption–desorption studies showed the high‐surface area of 418.1 m2 g−1 with an estimated pore diameter of 8.1 nm. Thermogravimetry analysis–derivative thermogravimetric analysis–differential thermal analysis showed the instant weight loss at 517°C attributed to the rapid combustion of nanotubes. A vibrating‐sample magnetometer showed the paramagnetic nature of the so‐formed carbon nanotubes formed.Inspec keywords: transmission electron microscopy, infrared spectra, nanomagnetics, pyrolysis, decomposition, adsorption, desorption, carbon nanotubes, differential thermal analysis, thermal analysis, nanofabrication, Raman spectra, X‐ray diffraction, scanning electron microscopy, paramagnetic materialsOther keywords: biogenic synthesis, highly porous carbon nanotubes, microorganisms, high‐temperature decomposition technique, cobalt salt, chicken fats, fatty acids, short hydrocarbon chains, Raman spectra, graphite mode G‐band, structural imperfections defect mode D‐band, transmission electron microscopy, paramagnetic nature, thermo‐magnetic properties, poultry waste, nitrogen adsorption‐desorption studies, thermogravimetry analysis, differential thermal analysis, carbon nanotubes, temperature 517.0 degC, C  相似文献   

14.
This study is aimed to explore the capacity of metal nanoparticles (NPs) iron, zinc, copper and their combinations introduced in the Murashige–Skoog (MS) nutrient medium (NM) to affect the growth and development of tomato plants (Solanum lycopersicum L.). NPs were prepared by a flow‐levitation method. Metal NPs were characterised by transmission and scanning electron microscopy, X‐ray phase analysis. Average NPs diameters were: iron – 27.0 nm, zinc – 54.0 nm, copper – 79.0 nm. MS NM was modified by substitution of common metal sulphates by neutral metal NPs instead of salts. Tomato seedlings cultivation on NM MS with NPs instead of salts assures improved seedling parameters (root length and root activity) in comparison with plants grown on standard MS. Venice cultivar tomato seedlings grown on NM with metal NPs demonstrated an increase in: seed germination by 10–180%, root length by 10–20%, and root activity by 10 –125%. After 45 days of cultivation, tomato seedlings were transplanted in a greenhouse and were grown up to the harvest. Effects in seed germination and increase of crop mass depended on metal nature and NPs concentration.Inspec keywords: copper, crops, nanoparticles, scanning electron microscopy, greenhouses, agriculture, nanofabrication, iron, zinc, transmission electron microscopyOther keywords: size 27.0 nm, size 54.0 nm, size 79.0 nm, time 45.0 d, Fe, Zn, Cu, metal nanoparticles, iron, zinc, tomato plants growth, Solanum lycopersicum L., flow‐levitation method, scanning electron microscopy, X‐ray phase analysis, metal sulphates, tomato seedlings cultivation, Murashige‐Skoog nutrient medium, Venice cultivar, copper, transmission electron microscopy, seed germination, greenhouse, seedlings transplantion  相似文献   

15.
Bio‐fabrication of gold nanoparticles (AuNPs) has several advantages like biocompatibility, less toxicity, and eco‐friendly in nature over their chemical and physical methods. Currently, the authors fabricated AuNPs using aqueous root extract of Momordica dioica (M. dioica) and explored their anticancer application with mechanistic approaches. Different biophysical techniques such as UV–visible spectroscopy, Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, and dynamic light scattering were employed for AuNPs characterisation. The synthesised AuNPs were mono‐dispersed, crystalline in nature, anionic surface (−23.9 mV), and spherical particle of an average diameter of 9.4 nm. In addition, the AuNPs were stable in buffers solutions and also biocompatible towards normal human cells (human vascular endothelial cells and human lung cells). The AuNPs were exhibited anticancer activity against different cancer cell lines such as human breast cancer cells, human cervical cancer cells (HeLa) and human lung cancer cells. Further, the pro‐apoptotic genes such as Bcl2 were down‐regulated and BAX, Caspase‐3, −8, and −9 were up‐regulated in HeLa cells as compared to untreated cells. Annexin‐V‐FITC assay results showed that the AuNPs were induced apoptosis by accumulation of intracellular reactive oxygen species. To their knowledge, this is the first report on the synthesis of bioactive metal nanoparticles from M. dioica and it may open up new avenues in therapeutic applications.Inspec keywords: nanomedicine, tumours, lung, visible spectra, drug delivery systems, cancer, transmission electron microscopy, biomedical materials, molecular biophysics, light scattering, toxicology, electron diffraction, X‐ray diffraction, ultraviolet spectra, biomembranes, drugs, gold, biochemistry, particle size, cellular biophysics, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: extrinsic apoptosis, intrinsic apoptosis, mediated gold nanoparticles, biofabrication, physical methods, biophysical techniques, UV‐visible spectroscopy, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, AuNPs characterisation, normal human cells, human vascular endothelial cells, cancer cell lines, human breast cancer cells, human cervical cancer cells, human lung cancer cells, HeLa cells, untreated cells, bioactive metal nanoparticles, Momordica dioica mediated gold nanoparticles, Fourier transform infrared spectra, proapoptotic genes, Bcl2 , BAX, Caspase‐3, Caspase‐9, Caspase‐8, Annexin‐V‐FITC assay, intracellular reactive oxygen species, therapeutic applications, voltage ‐23.9 mV, size 9.4 nm, Au  相似文献   

16.
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors’ work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/ɛ‐polycaprolactone nanoparticles (Nps‐AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps‐AEA/PCL. They obtained particles from 100 to 900 nm of diameter with a predominance of 200–400 nm. Their zeta potential was −20 ± 1.86 mV. They demonstrated the stable encapsulation of AEA in Nps‐AEA/PCL, as well as its dose‐dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+ /K+ ATPase activity in HK2 cells. Obtaining Nps‐AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.Inspec keywords: cellular biophysics, molecular biophysics, nanoparticles, nanofabrication, biochemistry, encapsulation, drugs, neurophysiology, electrokinetic effects, enzymes, biomedical materials, nanomedicine, polymers, sprayingOther keywords: electrospraying techniques, pharmacological effects, pharmacokinetic properties, in vitro biological activity, biological effect, HK2 cells, optimal physicochemical properties, polymeric nanoparticles, AEA pharmaceutical formulation development, anandamide‐ε‐polycaprolactone nanoparticles, drug encapsulation, nanocarriers, endocannabinoid, central nervous system, epithelial cells, human proximal tubule, zeta potential, stable encapsulation, dose‐dependent capacity, Na+ ‐K+ ATPase activity, physical stability, size 100.0 nm to 900.0 nm, NO, Na+ ‐K+   相似文献   

17.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

18.
Magnetic nanoparticles (NPs) were functionalised with soy protein isolate (SPI) and bovine serum albumin (BSA) for inulinase immobilisation. The results revealed the nanomagnetite size of about 50 nm with a polydispersity index (PDI) of 0.242. The average size of the SPI NPs prepared by using acetone was 80–90 nm (PDI, 0.277), and SPI–BSA NPs was 80–90 nm (PDI, 0.233), and their zeta potential was around −34 mV. The mean diameter of fabricated Fe3 O4 @SPI–BSA NPs was <120 nm (PDI, 0.187). Inulinase was covalently immobilised successfully through glutaraldehyde on Fe3 O4 @SPI–BSA NPs with 80% enzyme loading. Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy images provided sufficient proof for enzyme immobilisation on the NPs. The immobilised inulinase showed maximal activity at 45°C, which was 5°C higher than the optimum temperature of the free enzyme. Also, the optimum pH of the immobilised enzyme was shifted from 6 to 5.5. Thermal stability of the enzyme was considerably increased to about 43% at 75°C, and K m value was reduced to 25.4% after immobilisation. The half‐life of the enzyme increased about 5.13‐fold at 75°C as compared with the free form. Immobilised inulinase retained over 80% of its activity after ten cycles.Inspec keywords: magnetic particles, nanoparticles, proteins, molecular biophysics, nanofabrication, enzymes, Fourier transform spectra, infrared spectra, scanning electron microscopy, field emission ion microscopy, transmission electron microscopy, pH, biochemistry, nanobiotechnology, biomagnetism, electrokinetic effects, iron compoundsOther keywords: magnetic nanoparticles, soy protein isolate, bovine serum albumin, inulinase immobilisation, nanomagnetite, polydispersity index, SPI‐BSA NP, zeta potential, inulinase, glutaraldehyde, enzyme loading, Fourier transform infrared spectra, field emission scanning electron microscopy, transmission electron microscopy images, enzyme immobilisation, pH, size 80 nm to 90 nm, temperature 45 degC, temperature 75 degC, Fe3 O4   相似文献   

19.
Downstream studies of circulating tumor cells (CTCs), which may provide indicative evaluation information for therapeutic efficacy, cancer metastases, and cancer prognosis, are seriously hindered by the poor purity of enriched CTCs as large amounts of interfering leukocytes still nonspecifically bind to the isolation platform. In this work, biomimetic immunomagnetic nanoparticles (BIMNs) with the following features are designed: i) the leukocyte membrane camouflage, which could greatly reduce homologous leukocyte interaction and actualize high‐purity CTCs isolation, is easily extracted by graphene nanosheets; ii) facile antibody conjugation can be achieved through the “insertion” of biotinylated lipid molecules into leukocyte‐membrane‐coated nanoparticles and streptavidin conjunction; iii) layer‐by‐layer assembly techniques could integrate high‐magnetization Fe3O4 nanoparticles and graphene nanosheets efficiently. Consequently, the resulting BIMNs achieve a capture efficiency above 85.0% and CTCs purity higher than 94.4% from 1 mL blood with 20–200 CTCs after 2 min incubation. Besides, 98.0% of the isolated CTCs remain viable and can be directly cultured in vitro. Moreover, application of the BIMNs to cancer patients' peripheral blood shows good reproducibility (mean relative standard deviation 8.7 ± 5.6%). All results above suggest that the novel biomimetic nanoplatform may serve as a promising tool for CTCs enrichment and detection from clinical samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号