首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

2.
Biodegradable polymers have greatly promoted the development of environmental, biomedical and allied sciences because of their biocompatibility and doping chemistry. The emergence of nanotechnology has envisaged greater options for the development of biodegradable materials. Polyaniline grafted chitosan (i.e. biodegradable PANI) copolymer was prepared by the chemical in situ polymerisation of aniline using ammonium per sulphate as initiator while Ag nanoparticle were synthesised by chemical reduction method and incorporated in to the polymer matrix. The as prepared materials were characterised by X‐ray diffraction, Fourier transform Infra‐red spectroscopy, transmission electron microscopy, energy dispersive X‐ray analysis. Moreover energy storage capacity, impedance properties were also studied. The main focus was on the photocatalytic degradation of organic dyes to remove the toxic and carcinogenic pollutants. This polymer nano‐biocomposite has multifold applications and can be used as excellent materials for enhanced photodegradation and removal of toxic contaminants from waste waters and natural water streams. In addition, the biocompatible materials with excellent mechanical properties and low toxicity can also be used for tissue engineering, drug delivery and electrical energy storage devices.Inspec keywords: silver, filled polymers, polymer blends, nanocomposites, nanoparticles, nanofabrication, biodegradable materials, polymerisation, reduction (chemical), Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, X‐ray diffractionOther keywords: polyaniline‐chitosan‐silver‐nanobiocomposite, biodegradable polymers, biocompatibility, doping chemistry, nanotechnology, biodegradable PANI, polyaniline grafted chitosan copolymer, biodegradable materials, chemical in situ polymerisation, nanoparticle, polymer matrix, chemical reduction method, Fourier transform Infrared spectroscopy, transmission electron microscopy, energy dispersive X‐ray analysis, X‐ray diffraction, energy storage capacity, impedance properties, carcinogenic pollutants, toxic pollutants, photodegradation, toxic contaminants, natural water streams, waste waters, drug delivery, tissue engineering, electrical energy storage devices, mechanical properties, Ag  相似文献   

3.
Two different morphological forms of graphene nanosheets: improved reduced graphene oxide (IRGO) and modified reduced GO (rGO) (MRGO) have been synthesised by improved and modified methods, respectively. Physical characterisations of these graphene nanosheets were carried out using X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Colloidal stability of these nanosheets toward a selected bacterium (e.g. Staphylococcus aureus) was ascertained by zeta potential. In the present study, the authors for the first time made an attempt to study and compare the potentialities of these two different forms of graphene nanosheets as efficient bactericidal agents. Field‐emission scanning electron microscopy and TEM with energy dispersive X‐ray spectroscopy (EDAX) studies of IRGO and MRGO have been carried out to explore their underlying mechanism of antibacterial responses through physical as well as chemical interactions with the selected bacterial species.Inspec keywords: scanning electron microscopy, X‐ray diffraction, graphene, Raman spectra, field emission electron microscopy, microorganisms, colloids, X‐ray chemical analysis, antibacterial activity, electrokinetic effects, nanofabrication, Fourier transform infrared spectra, nanobiotechnologyOther keywords: graphene nanosheets, differential antibacterial response, gram‐positive bacterium, reduced graphene oxide, Staphylococcus aureus, X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, colloidal stability, field‐emission scanning electron microscopy, TEM, EDAX, C  相似文献   

4.
Silver nanoparticles (NPs) are immobilised on pistachio shell surface by Cichorium intybus L. leaves extract as an antioxidant media. The Fourier transform infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy equipped with energy‐dispersive X‐ray spectroscopy, and transmission electron microscope analyses confirmed the support of silver NPs on the pistachio shell (Ag NPs/pistachio shell). Ag NPs on the pistachio shell had a diameter basically in the 10–15 nm range. Reduction reactions of 4‐nitrophenol (4‐NP), and organic dyes at ambient condition were used in the investigation of the catalytic performance of the prepared catalyst. Through this research, the Ag NPs/pistachio shell shows a high activity and recyclability, and reusability without loss of its catalytic activity.Inspec keywords: transmission electron microscopy, nanoparticles, X‐ray diffraction, catalysis, nanofabrication, dyes, X‐ray chemical analysis, reduction (chemical), silver, catalysts, Fourier transform infrared spectra, field emission scanning electron microscopyOther keywords: waste pistachio shell, silver nanoparticles, catalytic reduction processes, pistachio shell surface, antioxidant media, infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscope analyses, reduction reactions, catalytic performance, catalytic activity, Cichorium intybus L. leaves extract, size 10.0 nm to 15.0 nm, Ag  相似文献   

5.
A facile and green process to synthesise cuttlebone supported palladium nanoparticles (Pd NPs/cuttlebone) is reported using Conium maculatum leaf extract and in the absence of chemical solvents and hazardous materials. The antioxidant content of the C. maculatum leaf extract played a significant role in converting Pd2+ ions to Pd NPs. Various techniques were used for the characterisation of the Pd NPs/cuttlebone such as field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared and ultraviolet–visible spectroscopy. This Pd NPs/cuttlebone showed excellent catalytic activity in the reduction of 2,4‐dinitrophenylhydrazine to 2,4‐diaminophenylhydrazine by sodium borohydride as the source of hydrogen at ambient condition. The catalyst could be separated and recycled up to five cycles with no loss of its activity.Inspec keywords: catalysis, catalysts, chemical engineering, palladium, nanoparticles, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, X‐ray chemical analysis, sodium compounds, ultraviolet spectroscopy, visible spectroscopyOther keywords: catalytic reduction, 2,4‐dinitrophenylhydrazine, cuttlebone, Conium maculatum leaf extract, green process, palladium nanoparticles, antioxidant content, field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, 2,4‐diaminophenylhydrazine, sodium borohydride  相似文献   

6.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   

7.
Retinoblastoma is the most common intraocular malignancy basically occurs among children below five. Certain ocular treatments such as surgery, radiation therapy and chemotherapy are more likely to cause side effects. Here, a rapid method of synthesising silver nanoparticles (AgNPs) from the brown seaweed Turbinaria ornata and its cytotoxic efficacy against the retinoblastoma Y79 cell lines was studied. The AgNPs synthesis was determined by Ultraviolet–visible spectroscopy and was further characterised by X‐ray diffraction, High‐resolution transmission electron microscopy, zeta potential, Energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectrum and inductively coupled plasma‐mass spectroscopy techniques. The synthesised AgNPs were found to be very stable and finely dispersed. The total phenolic content of the synthesised AgNPs was estimated at 43±2.52 mg/g gallic acid equivalent and the nanoparticles exhibited good scavenging activity analysed by 2, 2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulphonic acid) assay. Moreover, cytotoxicity of synthesised AgNPs against in vitro retinoblastoma Y79 cell lines showed a dose‐dependent response with an inhibitory concentration (IC50) of 10.5 µg/mL. These results suggest that AgNPs could be a promising anticancer agent with enhanced activity in ocular treatment.Inspec keywords: toxicology, silver, nanoparticles, cellular biophysics, cancer, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, electrokinetic effects, X‐ray chemical analysis, thermal analysis, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, biomedical materials, mass spectroscopic chemical analysisOther keywords: cytotoxic activity, marine seaweed Turbinaria ornata, intraocular malignancy, silver nanoparticles, brown seaweed Turbinaria ornata, X‐ray diffraction, high‐resolution transmission electron microscopy, zeta potential, EDAX, thermogravimetric analysis, Fourier transform infrared spectrum, inductively coupled plasma‐mass spectroscopy, phenolic content, gallic acid, scavenging activity, in vitro retinoblastoma Y79 cell lines, dose‐dependent response, inhibitory concentration, anticancer agent, 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulphonic acid) assay, nanotechnology‐based cancer diagnosis, ocular tumour treatment, ultraviolet‐visible spectroscopy, Ag  相似文献   

8.
In this study, the authors report a simple and eco‐friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum‐graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG‐AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG‐AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG‐AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG‐AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.Inspec keywords: antibacterial activity, cancer, biomedical materials, silver, nanofabrication, nanomedicine, nanoparticles, microorganisms, skin, cellular biophysics, biochemistry, light scattering, X‐ray chemical analysis, X‐ray diffraction, Fourier transform infrared spectra, particle sizeOther keywords: antibacterial potential, anticancer potential, antioxidant potential, silver nanoparticles, Trigonella foenum‐graecum seed extract, eco‐friendly method, biosynthesis, reaction time, AgNO3 concentration, TFG extract amount, physicochemical characterisation, dynamic light scattering, field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, size determination, TFG‐AgNPs size, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, skin cancer cell line A431, Ag  相似文献   

9.
In this study, CuO nanoparticles supported on the seashell (CuO NPs/seashell) was prepared using Rumex crispus seeds extract as a chelating and capping agent. The prepared nanocomposite was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and transmission electron microscopy. The particle size of CuO NPs on the seashell sheets was in the range of 8–60 nm. Catalytic ability of CuO NPs/seashell was investigated for the reduction of 4‐nitrophenol (4‐NP) and Congo red (CR). It was observed that catalyst can be easily recovered and reused several times without any significant loss of catalytic efficiency.Inspec keywords: nanocomposites, nanoparticles, catalysis, dyes, Fourier transform infrared spectra, X‐ray diffraction, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, particle size, copper compoundsOther keywords: CuO, size 8 nm to 60 nm, Congo red, 4‐nitrophenol, particle size, transmission electron microscopy, energy dispersive X‐ray spectroscopy, field emission scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, nanocomposite, capping agent, chelating agent, dye reduction, catalytic application, Rumex crispus seeds extract, seashell surface, nanoparticles, green synthesis  相似文献   

10.
This study for the first time reports on fresh water microalgae Chlorella minutissima aqueous extract (CmAe) which was utilized for the biogenic synthesis of silver nanoparticles and tested their antineoplastic potential against Liver Hepatocellular Carcinoma (HepG2) cell line. The characteristic colour change of the reaction mixture from greenish yellow to yellowish brown confirmed the synthesis of Chlorella minutissima silver nanoparticles (CmAgNPs). Microscopic analysis revealed CmAgNPs to be spherical‐shaped with particle size ranging from 10 to 30 nm. The carbohydrates and proteins distinctive peaks were observed in Fourier transform infrared spectroscopy (FTIR) spectra which suggested these biomolecules acted as reducing and capping agents. Further, the crystalline nature of CmAgNPs was confirmed by X‐ray diffraction (XRD) analysis. CmAgNPs showed maximum free radical scavenging proving it to be more potent antioxidant agent as compared to CmAe. The mortality rate of HepG2 cells treated with CmAgNPs was found to be 91.8 % at 120 μg/ml with IC50 value 12.42 ± 1.096 μg/ml after 48 h whereas no effect was observed on normal Human Embryonic Kidney (HEK 293) cells. Fluorescent images of the treated HepG2 cells revealed the formation of apoptotic bodies, condensed nuclei and cell shrinkage indicating their effectiveness against the cancer cells.Inspec keywords: silver, nanoparticles, nanomedicine, microorganisms, cellular biophysics, nanofabrication, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, proteins, Fourier transform infrared spectra, molecular biophysics, X‐ray chemical analysis, X‐ray diffraction, kidney, cancer, biomedical materialsOther keywords: antineoplastic potential, antioxidant potential, phycofabricated silver nanoparticle, Chlorella minutissima, freshwater microalgae, aqueous extract, liver hepatocellular carcinoma cell line, CmAgNP synthesis, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, atomic force microscopy, dynamic light scattering, carbohydrate, protein, Fourier transform infrared spectroscopy, biomolecule, energy‐dispersive X‐ray spectroscopy, elemental silver signal, CmAgNP crystalline, X‐ray diffraction analysis, antioxidant agent, HepG2 cell mortality rate, human embryonic kidney, HEK 293 cell, fluorescent image, apoptotic body formation, condensed nuclei, cell shrinkage, cancer cell, antineoplastic agent, Ag  相似文献   

11.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

12.
Hydroxyapatite‐shrimp crusts nanocomposite thin films were deposited on titanium substrates by electrophoretic technique, under different preparation conditions, for bone implant applications. Fourier transform infrared spectrometer, atomic force microscope, X‐ray diffraction (XRD), optical microscope, and scanning electron microscope were employed to characterise the synthesised films. Vickers’ micro‐hardness measurements revealed a value of 502 HV for the hydroxyapatite films and 314.55 HV for the nanocomposite films. XRD results confirmed the polycrystalline nature of the hydroxyapatite and hydroxyapatite‐shrimp nanocomposite films. The in‐vitro bioactivity test of the synthesised films in simulated body fluid showed very low dissolution rate. Antibacterial activity of synthesised films was investigated against E. coli bacteria.Inspec keywords: electrophoretic coating techniques, thin films, nanocomposites, antibacterial activity, bone, prosthetics, nanomedicine, calcium compounds, bioceramics, nanofabrication, Fourier transform infrared spectra, atomic force microscopy, X‐ray diffraction, optical microscopy, scanning electron microscopy, Vickers hardness, microhardness, microorganisms, dissolvingOther keywords: Ti, Ca10 (PO4)6 (OH)2 , E. coli bacteria, antibacterial activity, dissolution rate, simulated body fluid, in‐vitro bioactivity test, polycrystalline nature, Vickers microhardness measurements, XRD, scanning electron microscopy, optical microscopy, X‐ray diffraction, atomic force microscopy, Fourier transform infrared spectrometer, bone implant applications, titanium substrates, hydroxyapatite‐shrimp crust nanocomposite thin films, electrophoretic deposition  相似文献   

13.
In this study, the authors synthesised gold nanoparticles (Au NPs) by a green approach using an aqueous extract of empty cotton boll peels (ECBPs) which was rapid, simple and inexpensive eco‐friendly method compared to chemical and physical methods. The ECBP aqueous extract played a vital role in the reduction of Au+3 ions into Au NPs which was further confirmed by analytical characterisation. The phase purity and crystallinity of Au NPs were confirmed by X‐ray diffraction analysis. The characteristic functional groups of synthesised Au NPs were identified by Fourier transform infrared analysis. The surface morphology and topography of Au NPs were studied by scanning electron microscopy and transmission electron microscopy analysis. Size with dispersion stability of Au NPs was determined by dynamic light scattering and zeta potential studies. In this study, the authors performed a catalytic activity of Au NPs using different pollutant organic dyes such as methylene blue and methyl orange. It also showed good antioxidant activity compared to standard ascorbic acid by using the standard 1,1‐diphenyl‐2‐picryl‐hydrazil method. Hence, this study concluded that ECBP mediated Au NPs could act as a promising material for degradation of dyes and antioxidant activity.Inspec keywords: gold, dyes, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, surface morphology, surface topography, scanning electron microscopy, transmission electron microscopy, electrokinetic effectsOther keywords: gold nanoparticles, cotton peels aqueous extract, catalytic efficiency, antioxidant activity, green approach, empty cotton boll peels, analytical characterisation, phase purity, crystallinity, X‐ray diffraction, functional groups, Fourier transform infrared analysis, surface morphology, surface topography, scanning electron microscopy, transmission electron microscopy, dispersion stability, dynamic light scattering, zeta potential, pollutant organic dyes, methylene blue, methyl orange, Au  相似文献   

14.
Herein, the authors developed a new and potential semi‐interpenetrating polymer network (semi‐IPN) hydrogels of poly vinyl alcohol (PVA), acryl amide and diallyldimethyl ammonium chloride employing chemical cross‐linker N, N''‐methylene bisacrylamide (NNMBA) and ammonium persulphate as an initiator by radical polymerisation. To analyse the copolymer formation between two monomers and IPN cross‐linking reaction, the resulting hydrogel was characterised by Fourier transform infrared spectroscopy and the surface morphology was analysed using scanning electron microscopy. Differential scanning calorimetry and X‐ray diffraction studies were also carried out for investigating drug loading and distribution and swelling experiments were carried out for the uptake of water. In vitro release of ciprofloxacin hydrochloride from hydrogel was performed at intestinal conditions. The amount of PVA, NNMBA and total monomer concentration was found to strongly control the drug release behaviour from the hydrogels.Inspec keywords: hydrogels, polymer blends, biomedical materials, drug delivery systems, polymerisation, Fourier transform infrared spectra, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, swelling, biological organs, ammonium compoundsOther keywords: PVA‐poly(acrylamide‐co‐diallyldimethyl ammonium chloride) semiIPN hydrogels, ciprofloxacin hydrochloride drug delivery, semiinterpenetrating polymer network hydrogels, polyvinyl alcohol, acryl amide, diallyldimethyl ammonium chloride, chemical crosslinker N,N''‐methylene bisacrylamide, ammonium persulphate, radical polymerisation initiator, NNMBA, copolymer formation, IPN crosslinking reaction, Fourier transform infrared spectroscopy, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, drug loading, drug distribution, swelling, water uptake, in vitro ciprofloxacin hydrochloride release, intestinal conditions, total monomer concentration, drug release behaviour  相似文献   

15.
This study reports the fabrication of cellulose nanoparticles through electrospraying the solution of cellulose in N,N ‐dimethylacetamide/lithium chloride solvent as well as investigating the effect of electrospraying conditions and molecular weight on the average size of electrosprayed nanoparticles. Electrospraying of cellulose was carried out with the following range for each factor, namely concentration = 1–3 wt%, voltage = 15–23 kV, nozzle–collector distance = 10–25 cm, and feed rate = 0.03–0.0875 ml/h. The smallest nanoparticles had an average size of around 40 nm. Results showed that lowering the solution concentration and feed rate, as well as increasing the nozzle–collector distance and applied voltage led to a decrease in the average size of the electrosprayed cellulose nanoparticles. Fourier transform infrared analysis proved that no chemical change had occurred in the cellulose structure after the electrospraying process. According to X‐ray diffraction (XRD) results, cellulose nanoparticles showed a lower degree of crystallinity in comparison with the raw cellulose powder. XRD results also proved the absence of LiCl salt in the electrosprayed nanoparticles.Inspec keywords: polymers, nanoparticles, nanofabrication, spraying, molecular weight, particle size, Fourier transform infrared spectra, X‐ray diffraction, polymer structureOther keywords: cellulose nanoparticles, electrospraying, N,N‐dimethylacetamide‐lithium chloride solvent, molecular weight, solution concentration, feed rate, nozzle‐collector distance, Fourier transform infrared analysis, X‐ray diffraction, XRD, crystallinity, cellulose powder, voltage 15 kV to 23 kV  相似文献   

16.
In the present study, bacterial magnetosomes were used as a carrier molecule to couple with lemon grass extract (LGE) for the prevention of microbial biofilm in wound dressing material. Magnetosomes were extracted from Magnetospirillum sp. VITRJS‐1 and characterised by microscopic and X‐ray diffraction analysis. The phytochemical analyses of the extract showed the presence of bioactive compounds that are reported for antimicrobial and anti‐inflammatory activity. Gas chromatography–mass spectrometry analysis revealed the presence of antimicrobial citral and fernesal compounds. The extract was conjugated onto the magnetosomes and confirmed by Fourier transform infrared spectroscopy analysis. The prepared magnetosome–lemon grass extract (MLGE) was evaluated for its antibiofilm property against the biofilm‐forming pathogens Bacillus subtilis, Pseudomonas, Escherichia coli, Klebsiella and Staphylococcus aureus on wound dressing material by plate assay. The results indicated that the number of colonies formed was considerably reduced in MLGE coated wound dressing compared with that of LGE and control. Furthermore, SEM analysis displayed that the MLGE drastically reduced the spread of biofilm formation. Thus, MLGE coated wound dressings are effective in preventing the microbial biofilm formation, and further investigation on animal models will enable its use commercially.Inspec keywords: microorganisms, cellular biophysics, wounds, X‐ray diffraction, antibacterial activity, chromatography, mass spectra, Fourier transform infrared spectra, scanning electron microscopy, biochemistry, molecular biophysics, nanomedicineOther keywords: microbial biofilm, nanobiocoating, magnetosomes‐coupled lemon grass extract, extract bacterial magnetosomes, carrier molecule, wound dressing material, Magnetospirillum sp. VITRJS‐1, microscopic analysis, X‐ray diffraction, phytochemical analyses, bioactive compounds, antimicrobial activity, antiinflammatory activity, gas chromatography‐mass spectrometry, antimicrobial citral compounds, antimicrobial fernesal compounds, Fourier transform infrared spectroscopy, biofilm‐forming pathogens, Bacillus subtilis, Pseudomonas, Escherichia coli, Klebsiella, Staphylococcus aureus, SEM, MLGE coated wound dressings, microbial biofilm formation, animal models  相似文献   

17.
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio‐extract‐assisted methods. Characterisation techniques such as X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X‐ray were used to confirm the synthesis. Although chemical and bio‐assisted methods are suitable choices for NPs synthesis, the bio‐assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, semiconductor growth, antibacterial activity, X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, Fourier transform infrared spectra, nanobiotechnologyOther keywords: chemical methods, bio‐assisted methods, Silybum marianum in vitro plantlets methods, Silybum marianum in vitro callus extract methods, green chemistry, zinc oxide nanoparticles, sodium hydroxide, zinc acetate, X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, bio‐assisted green assembly, antibacterial activity, Klebsiella pneumonia, Bacillus subtilis, ZnO  相似文献   

18.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

19.
In the recent decades, nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical, biological and optical properties of metals. In this study, silver nanoparticles (AgNPs) synthesis using aqueous leaf extracts of Tagetes patula L. which act as reducing agent as well as capping agent is reported. Synthesis of AgNPs was observed at different parameters like temperature, concentration of silver nitrate, leaf extract concentration and time of reduction. The AgNPs were characterized using UV‐vis spectroscopy, scanning electron microscope with energy dispersive spectroscopy, transmission electron microscopy with selected area electron diffraction, X‐ray diffraction, Fourier transform infrared and dynamic light scattering analysis. These analyses revealed the size of nanoparticles ranging from 15 to 30 nm as well revealed their spherical shape and cubic and hexagonal lattice structure. The lower zeta potential (−14.2mV) and the FTIR spectra indicate that the synthesized AgNPs are remarkably stable for a long period due to the capped biomolecules on the surface of nanoparticles. Furthermore, these AgNPs were found to be highly toxic against phytopathogenic fungi Colletotrichum chlorophyti by both in vitro and in vivo and might be a safer alternative to chemical fungicides.Inspec keywords: silver, nanoparticles, nanofabrication, nanobiotechnology, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, crystal structure, electrokinetic effects, antibacterial activityOther keywords: biosynthesised silver nanoparticles, aqueous leaf extract, Tagetes patula L, antifungal activity, phytopathogenic fungi, nanotechnology, UV–vis spectroscopy, scanning electron microscope, energy dispersive spectroscopy, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, dynamic light scattering analysis, hexagonal lattice structure, zeta potential, phytopathogenic fungi Colletotrichum chlorophyti, cubic lattice structure, size 15 nm to 30 nm, Ag  相似文献   

20.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco‐friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell‐free extract (24 h) of the bacterial isolate was reacted with AgNO3 for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV‐visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag+) to atomic silver (Ag0) thereby synthesising NPs. X‐ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 − 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform‐infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.Inspec keywords: microorganisms, silver, nanoparticles, enzymes, molecular biophysics, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, catalysis, biochemistry, nanobiotechnologyOther keywords: catalytic protein, stabilising agents, Pseudomonas aeruginosa, metal nanoparticles, UV–visible spectroscopy, optical densities, ionic silver, atomic silver, X‐ray diffraction spectra, transmission electron microscopy, nitrate reductase, rhamnolipids, Fourier transform‐infrared spectroscopy, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号